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Low-Friction Surface

Bottom Block 
PMMA

“Insignificant” details of loading ! Highly nonuniform stress distributions
These dictate:

• The rupture mode that mediates slip onset 
• The value of the static “friction coefficient” 

O. Ben-David, G. Cohen, J.F., Science 330, 211 (2010).
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!“Static” and “Dynamic” friction:

 FS = µS FN (v = 0)
 FS = µD FN (v > 0)

µ - Friction Coefficient

The Classical View of  Friction
Leonardo Da Vinci (1452-1519) 

1. The areas in contact have no effect on friction.
• If the load of an object is doubled, its friction will also be doubled.
       ! FS ! FN

Guillaume Amontons (1663-1705) 
Charles August Coulomb (1736-1806) 
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The Classic View of  Friction: FS = µS FN 

F. Philip Bowden and David Tabor (1950) 
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The Classic View of  Friction: FS = µS FN 

F. Philip Bowden and David Tabor (1950) 

• Net contact area = A  <<  Nominal contact area
• A grows until local  pressure = yield strength
• Slip: Instantaneous Fracture of contacts when FS=Shear strength ·Area = "S ·A
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The Classic View of  Friction: FS = µS FN 

• Net contact area = A  <<  Nominal contact area
• A grows until local  pressure = yield strength
• Slip: Instantaneous Fracture of contacts when FS=Shear strength ·Area = "S ·A

FN

• A and "S govern the local contact strength of a rough interface!
• Note: Both A and "S may vary spatially and dynamically

FS

Ben-David, Rubinstein and Fineberg, Nature 463, 76 (2010)

S. M. Rubinstein, G. Cohen, and  J. F.,  Phys. Rev. Lett. 96, 256103 (2006)
S. M. Rubinstein, G. Cohen, and  J. F.,  Phys. Rev. Lett. 98, 226103 (2007)
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Earthquakes are Friction

San Andreas fault
California (USGS)
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Earthquakes are Friction

San Andreas fault
California (USGS)

but: Earthquakes are mediated by (rapid) fracture fronts

Y. Benzion (2008)

Kostrov, Eshelby, Freund, Rice, Aki, Andrews, Burridge….

A variety of different rupture modes (" earthquakes) have been predicted/
observed/deduced… that mediate the onset of friction 
(e.g slow, sub-Rayleigh, Supershear earthquakes, slip pulses…)
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Earthquakes are Friction

San Andreas fault
California (USGS)

• How can we make “sense” of these different rupture modes?
• Can these different rupture modes conspire to produce a 
   single “friction coefficient”???
• Do they??

but: Earthquakes are mediated by (rapid) fracture fronts

Y. Benzion (2008)

Kostrov, Eshelby, Freund, Rice, Aki, Andrews, Burridge….

A variety of different rupture modes (" earthquakes) have been predicted/
observed/deduced… that mediate the onset of friction 
(e.g slow, sub-Rayleigh, Supershear earthquakes, slip pulses…)
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A fracture primer: 

Griffith threshold for Fracture initiation 
Released elastic energy >  Energy to create new surfaces  (“Fracture Energy”)
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A fracture primer: 

Griffith threshold for Fracture initiation 
Released elastic energy >  Energy to create new surfaces  (“Fracture Energy”)

A crack focuses elastic energy into a stress field singularity at its tip.
 

• Material is preferentially ruptured at the tip of a crack 
• Failure: Loads << theoretical strength

#(r) ~K·r 

-1/2
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Real Contact area A measurements

 S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
 S. M. Rubinstein, G. Cohen, and  J. F.,  Int. J. Fracture 140, 201-212 (2006)
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Real Contact area A measurements

IIncident IReflected

ITransmitted

Itransmitted ! A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm A(x,t)= I(x,t) =   I(x,y,t) dy$

 S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
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Real Contact area A measurements

IIncident IReflected

ITransmitted

Itransmitted ! A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

 S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
 S. M. Rubinstein, G. Cohen, and  J. F.,  Int. J. Fracture 140, 201-212 (2006)

Non-uniform stresses along the interface

Are introduced/controlled by:
• Block edges
• Spatially inhomogeneous loads in FN, FS

• Dynamically, by prior slip events

LaserSheet

Fast Camera

6mm

200 mm

SF
NF
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Real Contact area A measurements

IIncident IReflected

ITransmitted

Itransmitted ! A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

 S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
 S. M. Rubinstein, G. Cohen, and  J. F.,  Int. J. Fracture 140, 201-212 (2006)
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Stress measurements
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Real Contact area A measurements

IIncident IReflected

ITransmitted

Itransmitted ! A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

 S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
 S. M. Rubinstein, G. Cohen, and  J. F.,  Int. J. Fracture 140, 201-212 (2006)

LaserSheet

Fast Camera

6mm

200 mm

SF
NF

5 mm

Stress measurements

74 miniature strain gages

All strain gages monitored continuously at ~2Hz
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Non-uniform stress profiles are formed naturally - prior to motion

S. M. Rubinstein, G. Cohen, and  J. F.,  Phys. Rev. Lett. 96, 256103 (2006)
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  Uniform loading + friction 
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   + uniform normal stress, #(x)

Torque due to applied shear, FS:
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   +  non-uniform  #(x)
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The contact-area/stress distribution can also change dynamically 
via arrested precursory slip (rupture) events
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• Precursors create highly non-uniform A(x)
• A(x) profile ! #(x) (normal stress)

The contact-area/stress distribution can also change dynamically 
via arrested precursory slip (rupture) events
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What types of rupture events occur upon slip initiation? 
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What types of rupture events occur upon slip initiation? 
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What types of rupture events occur upon slip initiation? 
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• Why do we see three different classes 
   of “crack-like” behaviors?
• When do we see them?
• Can we predict which of the different
   types of ruptures will occur?
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Three successive slip events driven 
under ostensibly the same external 
loading conditions:

Let’s look at the measured stress 
distributions…
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• Normal stress distributions are nearly identical!
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• Shear stress distributions are very similar! – What’s going on?
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A (x,t) Stresses prior to slip
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• A hint is given by looking at the local  stress differences!

A (x,t) Stresses prior to slip
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Local stress differences predict the different local dynamics

A (x,t) Stresses prior to slip

0

150

300

Sub-Rayleigh < CS 0

5

10

15

St
re

ss
 (M

Pa
)

0

5

10

15

St
re

ss
 (M

Pa
)

0 50 100 150 200
x (mm)

0

5

10

15

0 50 100 150 200

Normal #
Shear 2"

St
re

ss
 (M

Pa
)

x (mm)

Supershear > CS

0

150

300

Ti
m

e 
(µ

se
c)

Sub-Rayleigh ~ CS
0

150

300

Ti
m

e 
(µ

se
c)

Ti
m

e 
(µ

se
c)

Normal #
Shear 2"

Normal #
Shear 2"

Monday, November 1, 2010



Does this hold for all types of rupture process?
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Does this hold for all types of rupture process?
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We can now understand the local dynamics in terms of  "(x)/#(x)! 

Does this hold for all types of rupture process?
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:
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 Slow Rupture    "/#    0.5
 Rapid Fracture    "/#    0.5

> 100 different events/experiments under a broad range of local conditions:
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 Slow Rupture    "/#    0.5
 Rapid Fracture    "/#    0.5
 Supershear    "/# > 0.8

> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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 Slow Rupture    "/#    0.5
 Rapid Fracture    "/#    0.5
 Supershear    "/# > 0.8

> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)

• "/#  >> µS ~ 0.5 
(by over a factor of 3 with no local slip)
!Slip Nucleation ! local  µS 
• Phase diagram not dependent on 
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 Slow Rupture    "/#    0.5
 Rapid Fracture    "/#    0.5
 Supershear    "/# > 0.8

> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)

• "/#  >> µS ~ 0.5 
(by over a factor of 3 with no local slip)
!Slip Nucleation ! local  µS 
• Phase diagram not dependent on 
   loading conditions
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Significance of  "/#:  Slip events as a Fracture problem
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Significance of  "/#:  Slip events as a Fracture problem

 "(x) ! Imposed Shear
  " Stored elastic energy in the material
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Significance of  "/#:  Slip events as a Fracture problem

 "(x) ! Imposed Shear
  " Stored elastic energy in the material

#(x) ! A(x) (the Real Contact Area) and provides 
the local resistance  of the interface to   " 
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Significance of  "/#:  Slip events as a Fracture problem

Griffith threshold for Fracture (" slip): 
  Stored elastic energy released > interface strength or “Fracture Energy”

 "(x) ! Imposed Shear
  " Stored elastic energy in the material

#(x) ! A(x) (the Real Contact Area) and provides 
the local resistance  of the interface to   " 
 

Stored energy 
Interface strength

!"(x)
#(x)
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Significance of  "/#:  Slip events as a Fracture problem

Griffith threshold for Fracture (" slip): 
  Stored elastic energy released > interface strength or “Fracture Energy”

 "(x) ! Imposed Shear
  " Stored elastic energy in the material

#(x) ! A(x) (the Real Contact Area) and provides 
the local resistance  of the interface to   " 
 

Stored energy 
Interface strength

!"(x)
#(x)

Stored Energy 
Fracture Energy

!
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Significance of  "/#:  Slip events as a Fracture problem

 "(x) ! Imposed Shear
  " Stored elastic energy in the material

#(x) ! A(x) (the Real Contact Area) and provides 
the local resistance  of the interface to   " 
 

Stored energy 
Interface strength

!"(x)
#(x)

Stored Energy 
Fracture Energy

!

+ A key difference with pure fracture:
 

Slip surface resistance " frictional resistance of the “free” crack faces
ASK ME ABOUT: O. Ben-David, S. M. Rubinstein and J. F., Nature 463, 76 (2010)
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Why are there different rupture modes (a hand-waving explanation)?

Monday, November 1, 2010



Mode  Energy source      Dissipative source

Why are there different rupture modes (a hand-waving explanation)?
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Mode  Energy source      Dissipative source
Slow                 remote elastic fields         slip surface resistance » singular rupture tip 
 (V determined by contact resistance along slipping surfaces)

Why are there different rupture modes (a hand-waving explanation)?

< 0.5"(x)
#(x)
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Mode  Energy source      Dissipative source
Slow                 remote elastic fields         slip surface resistance » singular rupture tip 
 (V determined by contact resistance along slipping surfaces)

Sub-Rayleigh     remote elastic fields            singular rupture tip dominant
        (V limited by VR)

Why are there different rupture modes (a hand-waving explanation)?

< 0.5"(x)
#(x)

< 0.8"(x)
#(x)
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Mode  Energy source      Dissipative source
Slow                 remote elastic fields         slip surface resistance » singular rupture tip 
 (V determined by contact resistance along slipping surfaces)

Sub-Rayleigh     remote elastic fields            singular rupture tip dominant
        (V limited by VR)

Super-shear       LOCAL elastic fields           singular rupture tip dominant
 (V unlimited by VR " no energy transport from remote locations)

Why are there different rupture modes (a hand-waving explanation)?

< 0.5"(x)
#(x)

< 0.8"(x)
#(x)

> 0.8"(x)
#(x)
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So… what about the static “coefficient” of friction - µS?
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Fixed loading conditions
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So… what about the static “coefficient” of friction - µS?

For given loading conditions µS is entirely reproducible
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Varied loading conditions
Fixed loading conditions
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So… what about the static “coefficient” of friction - µS?

For different loading conditions µS is widely scattered
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Varied loading conditions
Fixed loading conditions
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So… what about the static “coefficient” of friction - µS?

 µS varies by over a factor of 2 with the (pre-slip) stress distribution 

 ! µS is far from a constant (and in fact is ill-defined)! 
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µS is not a material constant
Does this make sense?
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µS is not a material constant
Does this make sense? Yes! When frictional strength is governed by fracture.

 At the onset of fracture F ! F´:
   Energy balance   !   Force balance
           (fracture)         (friction coefficient)

F F´

(e.g. Tensile fracture) !
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µS is not a material constant
Does this make sense? Yes! When frictional strength is governed by fracture.

 At the onset of fracture F ! F´:
   Energy balance   !   Force balance
           (fracture)         (friction coefficient)

F F´

(e.g. Tensile fracture) !

“Frictional Fracture” is more complex: “free” crack faces are not free:
   Slip Onset " Frictional forces on the faces + “singular” shear stress 
   at the crack tip 
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µS is not a material constant
Does this make sense? Yes! When frictional strength is governed by fracture.

! µS is a characteristic  scale of the overall stored/fracture energy

 At the onset of fracture F ! F´:
   Energy balance   !   Force balance
           (fracture)         (friction coefficient)

F F´

(e.g. Tensile fracture) !

“Frictional Fracture” is more complex: “free” crack faces are not free:
   Slip Onset " Frictional forces on the faces + “singular” shear stress 
   at the crack tip 
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Inhomogeneous stresses always exist – even under “uniformly” applied loads
       

Inhomogeneities result from:
  Interface geometry or material contrasts (e.g. asperities) 
  Non-uniform loading (internal stresses or externally applied)
  Dynamically generated (by previous slip events)

Summary: The effects of nonuniform stresses and interface strength
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Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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• Local stresses can spatially and temporally vary ! for ostensibly the 
same  applied loading 

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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• Local stresses can spatially and temporally vary ! for ostensibly the 
same  applied loading 
• The local ratio "/# predicts the mode of rupture:

  Slow rupture
 “Standard” (sub-Rayleigh) cracks
  Supershear rupture

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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• Local stresses can spatially and temporally vary ! for ostensibly the 
same  applied loading 
• The local ratio "/# predicts the mode of rupture:

  Slow rupture
 “Standard” (sub-Rayleigh) cracks
  Supershear rupture
•The static friction coefficient is not a constant but can significantly vary
   via the loading configurations
 

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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(Some) Ramifications:

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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(Some) Ramifications:
• Laboratory earthquake “prediction” can be performed by comparing the
   stored/fracture energy distribution prior to earthquake nucleation.

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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(Some) Ramifications:
• Laboratory earthquake “prediction” can be performed by comparing the
   stored/fracture energy distribution prior to earthquake nucleation.

•    A spatially local “Friction Coefficient” is not a useful concept

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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(Some) Ramifications:
• Laboratory earthquake “prediction” can be performed by comparing the
   stored/fracture energy distribution prior to earthquake nucleation.

•    A spatially local “Friction Coefficient” is not a useful concept
 
•   Big Question: What is the proper theoretical framework for predicting
                            the onset of frictional motion???

Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, µS ,  for static friction!)
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Relevance to earthquakes: The dynamics of fault nucleation
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Relevance to earthquakes: The dynamics of fault nucleation

Sub-Rayleigh fronts           "    “Standard” earthquakes (0.2VR < V < 0.9VR)
Supershear fronts   can occur under quasi-static loading
                        "   “Supershear” earthquakes (e.g. Izmit 19991) 
Slow detachment fronts      "     ???
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Relevance to earthquakes: The dynamics of fault nucleation

Sub-Rayleigh fronts           "    “Standard” earthquakes (0.2VR < V < 0.9VR)
Supershear fronts   can occur under quasi-static loading
                        "   “Supershear” earthquakes (e.g. Izmit 19991) 
Slow detachment fronts      "     ???

1 Bouchon, M. et al. Geophys. Res. Lett. 28, 2723-2726 (2001). 
2 Crescentini, L., Amoruso, A. & Scarpa, R. Science 286, 2132-2134 (1999);
  Linde, A. T. & Sacks, I. S. Earth and Planetary Science Letters 203, 265-275 (2002). 
  Rogers, G. & Dragert, H. Science 300, 1942-1943 (2003). 

Slow earthquakes2 = slow detachment fronts? 

Characteristics of  “slow” fronts:
•  May occur frequently
•  Significant slip/strain release 
• “Silent” – having a weak atypical acoustic (seismic) signature.
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Earthquakes are Friction

San Andreas fault
California (USGS)
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Earthquakes are Friction

San Andreas fault
California (USGS)

Friction is mediated by rupture  fronts

Y. Benzion (2008)
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Earthquakes are Friction

San Andreas fault
California (USGS)

• We can now make “sense” of these different rupture modes!
•  Prediction: Given the local "/# ratio we may be able to  predict 
the rupture mode and size of a future earthquake

Friction is mediated by rupture  fronts

Y. Benzion (2008)
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Earthquakes are Friction

San Andreas fault
California (USGS)

• We can now make “sense” of these different rupture modes!
•  Prediction: Given the local "/# ratio we may be able to  predict 
the rupture mode and size of a future earthquake
• These measurements might provide us with the tools…

Friction is mediated by rupture  fronts

Y. Benzion (2008)
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Thank you!
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