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“Insignificant’ details of loading =» Highly nonuniform stress distributions
These dictate:
* The rupture mode that mediates slip onset
* The value of the static “friction coefficient’

O. Ben-David, G. Cohen, J.F., Science 330, 211 (2010).
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The Classical View of Friction

Leonardo Da Vinci (1452-1519)

1. The areas in contact have no effect on friction.
« Ifthe load of an object is doubled, its friction will also be doubled.

2> Fx Fy

Guillaume Amontons (1663-1705)
Charles August Coulomb (1736-1806)

=>»“Static” and “Dynamic” friction:

ug Fy (v="0)
up Fy (v>0)

Fy
Fy

W - Friction Coefficient
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The Classic View of Friction: F¢ = ug Fy

F. Philip Bowden and David Tabor (1950)
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The Classic View of Friction: Fq = ug Fy

ﬂ F. Philip Bowden and David Tabor (1950)

e Net contact area = 4 << Nominal contact area
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The Classic View of Friction: Fq = ug Fy

ﬂ F. Philip Bowden and David Tabor (1950)

e Net contact area = 4 << Nominal contact area
* A grows until local pressure = yield strength

e Slip: Instantaneous Fracture of contacts when F¢=Shear strength -Area = t¢ -4
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The Classic View of Friction: Fq = ug Fy

&

e Net contact area = 4 << Nominal contact area
* A grows until local pressure = yield strength

- A and T4 govern the local contact strength of a rough interface!
« Note: Both A and t¢ may vary spatially and dynamically

S. M. Rubinsteir, G. Cohen, and J. F,, Phys. Rev. Lett. 96, 256103 (2006)  — N\
S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 98, 226103 (2007) v

Ben-David, Rubinstein and Fineberg, Nature 463, 76 (2010)
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Earthquakes are Friction

San Andreas fault

California (USGS)
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Earthquakes are Friction
but: Earthquakes are mediated by (rapid) fracture fronts

San Andreas fault

California (USGS)
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Figure 13. (top) Stress versus distance from the edge of (bottom) ruptures growing in clastic solid o " T o i
I:;x-pl:\ugs l:\lf'f a critical size R, produce dynamically stress comparable 1o the static friction lead 1o ’L: ! * :
Y. Benzion (2008) < 3 M ¢
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A variety of different rupture modes (< earthquakes) have bee ) “f.’
observed/deduced... that mediate the onset of friction LSS
(e.g slow, sub-Rayleigh, Supershear earthquakes, slip pulses...) f;
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Earthquakes are Friction
but: Earthquakes are mediated by (rapid) fracture fronts

San Andreas fault

California (USGS)
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Figurce 13. (top) Stress versus distance from the edge of (bottom) ruptures growing in clastic solid. T f
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(e.g slow, sub-Rayleigh, Supershear earthquakes, slip pulses...) f

* How can we make “sense” of these different rupture modes?
* Can these different rupture modes conspire to produce a
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Earthquakes are Friction
but: Earthquakes are mediated by (rapid) fracture fronts

San Andreas fault

= California (USGS)
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Figure 13. (top) Stress versus distance from the edge of (bottom) ruptures growing in clast olid. o ng - ? ;
:f:;z::u:: ::I:l.:‘:\ critical size R, produce dynamically stress comparable to the static friction r, leading to ‘* ! L . : * :
' Y. Benzion (2008) -\ it ' ' )
) ' - “
Kostrov, Eshelby, Freund, Rice, Aki, Andrews, Burridge.... SRUATY “% {?
A variety of different rupture modes (< earthquakes) have bee ) me‘
observed/deduced... that mediate the onset of friction LS
(e.g slow, sub-Rayleigh, Supershear earthquakes, slip pulses...) f;

* How can we make “sense” of these different rupture modes?

* Can these different rupture modes conspire to produce a
single “friction coefficient”???

* Do they??
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A fracture primer:

Griffith threshold for Fracture initiation
Released elastic energy = Energy to create new surfaces (“Fracture Energy”)
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A fracture primer:

Griffith threshold for Fracture initiation
Released elastic energy = Energy to create new surfaces (“Fracture Energy”)

r 1

T
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A fracture primer:

Griffith threshold for Fracture initiation
Released elastic energy = Energy to create new surfaces (“Fracture Energy”)

r t 1

o(r) ~K-r
ooy

A crack focuses elastic energy into a stress field singularity at its tip.

» Material is preferentially ruptured at the tip of a crack
* Failure: Loads << theoretical strength
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Real Contact area 4 measurements

F . Fast Camera

FS
& 300’?7
{%q"c N 6 Tl
Q ¢ /,' mm ~a
Cr -

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)
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Real Contact area 4 measurements

Fast Camera
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Real Contact area 4 measurements Non-uniform stresses along the interface

F Fast Camera _
N Are introduced/controlled by:
F
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Real Contact area 4 measurements Non-uniform stresses along the interface

F Fast Camera _
Are introduced/controlled by:

* Block edges

Transmitted

///

B

Incident IReﬂected

Itransmitted o A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)

Monday, November 1, 2010




Real Contact area 4 measurements Non-uniform stresses along the interface

F Fast Camera

Are introduced/controlled by:
* Block edges
Q - Spatially inhomogeneous loads in Fy, Fqg

Transmitted

%

B

Incident IReﬂected

Itransmitted o A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)

Monday, November 1, 2010




Real Contact area 4 measurements Non-uniform stresses along the interface

F Fast Camera

Are introduced/controlled by:
* Block edges
Q - Spatially inhomogeneous loads in Fy, Fqg

Transmitted

%

B

Incident IReﬂected

Itransmitted o A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)

Monday, November 1, 2010




Real Contact area 4 measurements Non-uniform stresses along the interface
F Fast Camera

Are introduced/controlled by:

Fq - Block edges
Q - Spatially inhomogeneous loads in Fy, Fg
* Dynamically, by prior slip events
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Real Contact area 4 measurements Stress measurements

F . Fast Camera

F S

: ' J .‘ M e {1 “

" . e ,-;J\“;:g{i ROV e
/,’ _B._T’—:—:»—r——— ..,: ~ = —
9001]] )
S NS
60 (\' ,/’ 6mm \\\A
GI e
ITransmitted

///

I

Incident IReﬂected

Itransmitted x A
Frame Rate ~ 250,000 Frames/sec
Resolution: 1280 Pixels / 200mm

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)
S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)

Monday, November 1, 2010




Real Contact area 4 measurements

F . Fast Camera

F S
<, 300’?2 S
%q"c ~ 6 ks
0 ' < o= mm SA
GI e
ITransmitted

///

I

Incident IReﬂected

Itransmitted o A
Frame Rate ~ 250,000 Frames/sec

S. M. Rubinstein, G. Cohen, and J. F., Nature 430, 1005-1009 (2004)

Stress measurements

Resolution: 1280 Pixels / 200mm All strain gages monitored continuously at ~2Hz

S. M. Rubinstein, G. Cohen, and J. F., Int. J. Fracture 140, 201-212 (2006)
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Non-uniform stress profiles are formed naturally - prior to motion

5F,8

O(x)

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)
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Non-uniform stress profiles are formed naturally - prior to motion

O(x)

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)
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Non-uniform stress profiles are formed naturally - prior to motion

T(x) Uniform loading + friction
Frustrated Poisson expansion:
/;-__/ =» Non-uniform shear stess, T(X)
X + uniform normal stress, O(X)
O(x)
X

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)

Monday, November 1, 2010
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Non-uniform stress profiles are formed naturally - prior to motion

T(x) Uniform loading + friction
/ Frustrated Poisson expansion:
7/ =» Non-uniform shear stess, T(X)
X + uniform normal stress, O(X)
) Torque due to applied shear, Fq:
O(x -
— =>» Uniformly increased t(x)

X + non-uniform o(x)

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)
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Non-uniform stress profiles are formed naturally - prior to motion

&z

T(x) / Uniform loading + friction
Frustrated Poisson expansion:
// =>» Non-uniform shear stess, T(X)
X + uniform normal stress, O(X)

Torque due to applied shear, Fq:

Ox) - . .
- =>» Uniformly increased t(x)

X + non-uniform o(x)

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)
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Non-uniform stress profiles are formed naturally - prior to motion

pe

T(x) / Uniform loading + friction
/ Frustrated Poisson expansion:
=» Non-uniform shear stess, T(X)

X + uniform normal stress, O(X)

/ Torque due to applied shear, Fq:
O(x)

Y =>» Uniformly increased t(x)
X + non-uniform o(x)

S. M. Rubinstein, G. Cohen, and J. F., Phys. Rev. Lett. 96, 256103 (2006)
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The contact-area/stress distribution can also change dynamically

via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically

via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically

via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically

via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically
via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically
via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically
via arrested precursory slip (rupture) events
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The contact-area/stress distribution can also change dynamically
via arrested precursory slip (rupture) events
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What types of rupture events occur upon slip initiation?
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What types of rupture events occur upon slip initiation?

“Garden variety” rupture (v < Cy)

Time (usec)
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Horizontal lines are 4(x) over the entire interface
separated in time by 2-20us

Relative contact area
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What types of rupture events occur upon slip initiation?

“Garden variety” rupture (v < Cy)

-200‘
Horizontal lines are 4(x) over the entire interface :
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What types of rupture events occur upon slip initiation?

“Slow” rupture (v << Cy)
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What types of rupture events occur upon slip initiation?

“Slow” rupture (v << Cy)
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What types of rupture events occur upon slip initiation?

“Super-shear” rupture (v > Cy)
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“Super shear” rupture (v > Cy)
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. Why do we see tlmroe different classes
of “crack-like”” behaviors?

 When do we see them?
» Can we predict which of the different
types of ruptures will occur?

What types of rupture events occur upon slip initiation?
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Three successive slip events driven
under ostensibly the same external
loading conditions:

Let’s look at the measured stress
distributions...

Monday, November 1, 2010




» Normal stress distributions are nearly 1dentical!
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» Shear stress distributions are very similar!
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* A hint 1s given by looking at the local stress differences!

Stresses prior to slip
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Local stress differences predict the different local dynamics

Stresses prior to slip
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Does this hold for all types of rupture process?
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Does this hold for all types of rupture process?
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We can now understand the local dynamics in terms of t(x)/0(x)!
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:
(only regions away from pushing considered)
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> 100 different events/experiments under a broad range of local conditions:

(only regions away from pushing considered)
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Significance of T/0: Slip events as a Fracture problem
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O(x) o A(x) (the Real Contact Area) and provides
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Significance of t/0: Slip events as a Fracture problem

Y W T B W T(X) X |Imposed Shear
‘ < Stored elastic energy in the material

O(x) o A(x) (the Real Contact Area) and provides
the local resistance of the interfaceto T

Griffith threshold for Fracture (< slip):
Stored elastic energy released > interface strength or “Fracture Energy”

t(x) oC  Stored energy
o(x) Interface strength
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Significance of T/0: Slip events as a Fracture problem

‘E(x) X Imposed Shear
< Stored elastic energy in the material

O(x) o A(x) (the Real Contact Area) and provides
the local resistance of the interfaceto T

Griffith threshold for Fracture (< slip):
Stored elastic energy released > interface strength or “Fracture Energy”

t(x) o  Stored energy X  Stored Energy
o(x) Interface strength Fracture Energy
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Significance of T/0: Slip events as a Fracture problem

‘E(x) X Imposed Shear
< Stored elastic energy in the material

O(x) o A(x) (the Real Contact Area) and provides
the local resistance of the interfaceto T

t(x) o  Stored energy X  Stored Energy
o(x) Interface strength Fracture Energy

+ A key difference with pure fracture:

Slip surface resistance <~ frictional resistance of the “free” crack faces

ASK ME ABOUT: O. Ben-David, S. M. Rubinstein and J. F., Nature 463, 76 (2010)
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Why are there different rupture modes (a hand-waving explanation)?
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Why are there different rupture modes (a hand-waving explanation)?

Mode Energy source Dissipative source
Slow remote elastic fields slip surface resistance » singular rupture tip

(V determined by contact resistance along slipping surfaces)

B
| ;
Sub-Rayleigh remote elastic fields singular rupture tip dominant
(V limited by Vp,)
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Why are there different rupture modes (a hand-waving explanation)?

Mode Energy source Dissipative source
Slow remote elastic fields slip surface resistance » singular rupture tip

(V determined by contact resistance along slipping surfaces)

B
| ;
Sub-Rayleigh remote elastic fields singular rupture tip dominant
(V limited by Vp,)
B
=]
Super-shear LOCAL elastic fields singular rupture tip dominant

(V unlimited by Vi < no energy transport from remote locations)

— t(x)
- &> Ri63) > 0.8
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So... what about the static “coefficient” of friction - Ug?
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So... what about the static “coefficient” of friction - Ug?

35
30 | [IEM Fixed loading conditions
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Us = FS / I:N
For given loading conditions |\ 1s entirely reproducible
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So... what about the static “coefficient” of friction - Ug?

35

I varied loading conditions
30 | | Fixed loading conditions

25T

20 |

15 |

10 |

Number of Events

5 =

%.35 04 0.45 05 055 06 0.65 0.7 0.75
us=Fg/Fy
For different loading conditions g 1s widely scattered
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So... what about the static “coefficient” of friction - Ug?

35 ' ' '
I varied loading conditions

30 | | Fixed loading conditions
£
-
S 25
0
« 20
@)
@
QL 15
£
> 10
Z
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W varies by over a factor of 2 with the (pre-slip) stress distribution
=> U 1s far from a constant (and in fact is ill-defined)!
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W 1S not a material constant

Does this make sense?

Monday, November 1, 2010




W 18 not a material constant

Does this make sense? Yes! When frictional strength is governed by fracture.

AW I
(e.g. Tensile fracture) == # —
1 r
F F
At the onset of fracture F # F
Energy balance # Force balance
(fracture) (friction coefficient)
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(e.g. Tensile fracture) == # —
1 r
F F
At the onset of fracture F # F
Energy balance # Force balance
(fracture) (friction coefficient)

“Frictional Fracture”is more complex: “free” crack faces are nof free:

Slip Onset <~ Frictional forces on the faces + “singular” shear stress
at the crack tip
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W 18 not a material constant

Does this make sense? Yes! When frictional strength is governed by fracture.

AW I
(e.g. Tensile fracture) == # —
1 r
F F
At the onset of fracture F # F
Energy balance # Force balance
(fracture) (friction coefficient)

“Frictional Fracture”is more complex: “free” crack faces are nof free:

Slip Onset <~ Frictional forces on the faces + “singular” shear stress
at the crack tip

- U 1s a characteristic scale of the overall stored/fracture energy

Monday, November 1, 2010




Summary: The effects of nonuniform stresses and interface strength

Inhomogeneous stresses always exist — even under “uniformly” applied loads

Inhomogeneities result from:
Interface geometry or material contrasts (e.g. asperities)
Non-uniform loading (internal stresses or externally applied)
Dynamically generated (by previous slip events)
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Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, .., for static friction!)
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e The local ratio T/O predicts the mode of rupture:

Slow rupture

“Standard” (sub-Rayleigh) cracks
Supershear rupture
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Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, .., for static friction!)

* Local stresses can spatially and temporally vary = for ostensibly the
same applied loading

e The local ratio T/O predicts the mode of rupture:

Slow rupture
“Standard” (sub-Rayleigh) cracks
Supershear rupture
*The static friction coefficient 1s not a constant but can significantly vary
via the loading configurations
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Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, .., for static friction!)

(Some) Ramifications:
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* Laboratory earthquake “prediction” can be performed by comparing the
stored/fracture energy distribution prior to earthquake nucleation.
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Summary: The effects of nonuniform stresses and interface strength

Inhomogeneities control the amount of energy stored prior to slip initiation
(Locally, a system can be well beyond the global threshold, .., for static friction!)

(Some) Ramifications:
* Laboratory earthquake “prediction” can be performed by comparing the

stored/fracture energy distribution prior to earthquake nucleation.

* Aspatially /local “Friction Coefficient” is not a useful concept

° Big Question: What is the proper theoretical framework for predicting
the onset of frictional motion???
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Relevance to earthquakes: The dynamics of fault nucleation
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Relevance to earthquakes: The dynamics of fault nucleation

Sub-Rayleigh fronts <~ “Standard” earthquakes (0.2Vy <V <0.9V})

Supershear fronts can occur under quasi-static loading
& “Supershear” earthquakes (e.g. Izmit 19991)
Slow detachment fronts <~ 777
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Relevance to earthquakes: The dynamics of fault nucleation

Sub-Rayleigh fronts <~ “Standard” earthquakes (0.2Vy <V <0.9Vy)

Supershear fronts can occur under quasi-static loading
& “Supershear” earthquakes (e.g. Izmit 19991)

Slow detachment fronts <& 777
Slow earthquakes? = slow detachment fronts?

Characteristics of “slow” fronts:

e May occur frequently

 Significant slip/strain release

« “Silent” — having a weak atypical acoustic (seismic) signature.

1 Bouchon, M. et al. Geophys. Res. Lett. 28, 2723-2726 (2001).

2 Crescentini, L., Amoruso, A. & Scarpa, R. Science 286, 2132-2134 (1999);
Linde, A. T. & Sacks, I. S. Earth and Planetary Science Letters 203, 265-275 (2002).
Rogers, G. & Dragert, H. Science 300, 1942-1943 (2003).
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Earthquakes are Friction

San Andreas fault

California (USGS)
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Earthquakes are Friction
Friction is mediated by rupture fronts

s — p
3
4 LB & ]
Ry= Rc : o 7 W
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Figure 13. (top) Stress versus distance from the edge of (bottom) ruptures growing in clastic solid.
Ruptures with a critical size R, produce dynamically stress comparable 1o the static friction ., leading to R
unaway cvents . ?
Y. Benzion (2008) "

San Andreas fault
California (USGS)
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Earthquakes are Friction
Friction is mediated by rupture fronts

San Andreas fault
y California (USGS)
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* We can now make “sense” of these different rupture modes!
 Prediction: Given the local t/o ratio we may be able to predict

the rupture mode and size of a future earthquake
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Earthquakes are Friction
Friction is mediated by rupture fronts

San Andreas fault
A California (USGS)
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Figure 13. (top) Stress versus distance from the edge of (bottom) ruptures growing in ¢lastic solid.
Ruptures with a critical size R, produce dynamically stress comparable to the static friction 7, leading to
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* We can now make “sense” of these different rupture modes!
 Prediction: Given the local t/o ratio we may be able to predict

the rupture mode and size of a future earthquake
* These measurements might provide us with the tools...
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Thank you!
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