Integrating observations from the lower stability transition of the seismogenic zone

Mike Brudzinski

Miami University (in Ohio)

What happens at the down-dip end of the seismogenic zone?

- Transition via zone of conditional stability
 - Rupture propagates deeper than it can initiate
- Transition to zone of velocity strengthening
 - Prominent postseismic afterslip
- Transition to zone of oscillatory behavior
 - Episodic tremor and slip

1) Transition via Conditional Stability

 Earthquake instability initiates in velocity weakening region and can propagates into conditional stability region

Thermal Estimates of Transition Zone

Hyndman and Wang, 1993; 1995

Yet megathrust rupture extent seems to match where aftershocks initiate

Perhaps Limited by Mantle Geology

2) Transition to Afterslip

- Earthquake instability initiates in velocity weakening region and can propagate briefly into velocity strengthening region
- Return to initial stress state results in afterslip

Estimates of Deep Afterslip

Estimates of Along-Strike Afterslip

Fukuda et al., 2009

Perfettini et al., 2010

Afterslip Triggered By Mainshock

Fukuda et al., 2009

Afterslip Drives Aftershocks

Sumatra (Nias)

Earthquake Swarms

Mainshock-Aftershock

Swarm

 Evidence for transient slip correlated with swarms in Boso, Salton Trough, Kilauea

Megathrust and Volcanic Swarms

Swarms occur in same location as afterslip, reduced coupling, segmentation

Transition Zone Behavior: ETS

Spatial Distribution of Slip Phenomena

Tremor and Earthquakes Spatially Anticorrelated

Tuesday, November 23, 2010

Conductivity

San Andreas:

Tremor along High Conductivity

Conductivity

Cascadia:

Tremor and Slow Slip in High Conductivity

Mexico:

Tremor in High Conductivity

New Zealand:

No High Conductivity, Slip triggers Earthquakes instead of Tremor

Geologic Controls on ETS and Locking

Geologic Controls on ETS and Locking

-126 -123 Washington 45 Oregon California

Brudzinski and Allen, 2007

Gomberg et al., 2010

Integrating Observations of the Transition Zone

- Need to compare distribution of earthquakes, afterslip, episodic tremor and slip
- Expectation:
 - Earthquakes in velocity weakening
 - ETS near the transition
 - Afterslip in velocity strengthening

Earthquakes, Afterslip, Slow Slip, NVT in Mexico

Earthquakes, Afterslip, Slow Slip, NVT in Nankai and Alaska

Tuesday, November 23, 2010

Coseismic Slip, Afterslip, Slow Slip

Magnitudes

Alaska, Nankai, Mexico

Coseismic: ~10m, ~5m, ~1m

Afterslip: ~20-40 cm/y @ 1 y

Slow slip: 4, 5, 10 cm/y

Tuesday, November 23, 2010

How can afterslip occur in the same relative location as episodic slip?

- Hypothesis 1: Heterogeneous frictional properties along strike: regions of episodic slip are deep asperities
- Hypothesis 2: Frictional behavior varies with strain rate: coseismic strain causes strengthening, interseismic strain causes weakening

Some observations associated with fault slip that I think will shed new light on the frictional stability transition

- (Earthquakes, Tremor and Slow Slip)
- Afterslip
- Earthquake swarms
- High conductivity regions
- Geologic terranes