The evolution of fault roughness, gouge and

Emily E. Brodsky

Amir Sagy*
Jacqui Gilchrist**
Heather Savage***

*Now at Geological Survey of Israel

**Now at UC Riverside

A Simplified Fault

A Simplified Fault

A Simplified Fault

Slugview

http://www.pmc.ucsc.edu/~msteffec/SlugView

Large-slip (mature) faults are smoother than small-slip (immature) faults

Profiles from large-slip faults (Slip >10 m)

Profiles from small-slip faults (Slip <1 m)

More Faults

Last Slide: Western US

New Data: Italy

Gilchrist et al., *EPSL*, in revision.

λ =0.5 μ

Courtesy Eric Dunham, Stanford

Geometrical Asperities (Bumps) on Mature Faults

Large-slip faults have distinct 10-m scale bumps (asperities)

Visualization with Slugview

Western Fucino Basin, Italy

Monte Maggio

N. Borcola Pass

Is the bump scale

Monochromatic fit

Residual

0.1 0.05 (E) 10 15 0.05 -0.1 -0.15 0 5 10 15 20 25 30 Distance (m)

Synthetic self-affine bump Monochromatic fit Residual

Asperities and

5

McEvilly et al.

Fault Zone Architecture

Monday, November 1, 2010

Fault Zone Architecture Under the Bumps

Fault Zone Architecture Under the Bumps

Bumps are due to thickening of granular flow layer.

Fault Zone Architecture Under the Bumps

Bumps are due to thickening of granular flow layer.

Corollary: Bumps are both rheological and geometrical asperities

Shear Localization in Granular Flows

Kevin Lu, UCLA

Shear Localization in Granular Flows

Kevin Lu, UCLA

Evolution with displacement

Sagy and Brodsky, JGR, 2009

Monday, November 1, 2010

Monday, November 1, 2010

Monday, November 1, 2010

Savage and Brodsky JGR, submitted

Savage and Brodsky JGR, submitted

Stochastic Model of Damage Zone Creation

What have we learned...

- Quantifying Roughness:
 - Over cm to m scales, immature faults are self-similar with ~1 % roughness
 - Faults smooth with increasing slip (but weakly)
- Nature of heterogeneity:
 - At 10's of meters anomalous bumps occur on fault surfaces
 - Indicates of thickening of the gouge layer
 - Bumps are both geometrical and rheological asperities
- Evolution of damage:
 - Damage patterns are consistent with individual strands of all maturity faults generating similar stress fields
 - Apparent changes in damage for large-displacement faults reflect secondary strand formation which occurs with a small probability (~0.05%) for each fracture

What have we learned...

- Quantifying Roughness:
 - Over cm to m scales, immature faults are self-similar with ~1 % roughness
 - Faults smooth with increasing slip (but weakly)

TOTAL OFFSET EVOLVES A FAULT ZONE

- Evolution of damage:
 - Damage patterns are consistent with individual strands of all maturity faults generating similar stress fields
 - Apparent changes in damage for large-displacement faults reflect secondary strand formation which occurs with a small probability (~0.05%) for each fracture

