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A Simplified Fault
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Fault Geometry at the Scale of
Earthquake Slip: LiDAR
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Large-slip (mature) faults are smoother than
small-slip (immature) faults
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Large-slip faults have distinct
10-m scale bumps (asperities)

Visualization with Slugview
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Monte Maggio
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N. Borcola Pass
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San Andreas Fault

San Andreas Fault
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Fault Zone Architecture
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Shear Localization in Granular Flows

Kevin Lu, UCLA
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Shear Localization in Granular Flows
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Evolution with displacement
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Falloff of Damage is a Function of
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Evolution of damage with
increasing displacement
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Evolution of damage with
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Evolution of damage with
increasing displacement
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Stochastic Model of Damage Zone
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What have we learned...

e Quantifying Roughness:
 Over cm to m scales, immature faults are self-similar with
~1 % roughness

e Faults smooth with increasing slip (but weakly)

* Nature of heterogeneity:

e At 10’s of meters anomalous bumps occur on fault surfaces

* Indicates of thickening of the gouge layer
* Bumps are both geometrical and rheological asperities

* Evolution of damage:
 Damage patterns are consistent with individual strands of
all maturity faults generating similar stress fields

e Apparent changes in damage for large-displacement faults
reflect secondary strand formation which occurs with a
small probability (~¥0.05%) for each fracture
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A Simplified Fault Revisited:
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