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Possible Mechanisms for Slow Slip

» Change in frictional behavior at high slip speed [e.g., Shibazaki
and lio, 2003; Shibazaki and Shimamoto, 2007].

» Rate-state friction near neutral stability [Yoshida and Kato, 2003;
Kuroki et al, 2004; Liu and Rice, 2005; 2007; Rubin, 2008].

*Stable friction perturbed from steady-state [Perfittini and Ampuero,
2009].

 Dilatant stabilization [Rice, 1975, Rice and Simons , 19706,
Rudnicki, 1979]; in rate-state friction context [Segall and Rice,
1995; Segall and Rubin, 2007-9 AGU; Segall et al, 2010 in press,
Liu and Rubin, in press], also Suzuki and Yamashita [2008, AGU;
JGR, 2009].
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Hypothesis

Velocity weakening rate-state friction
nucleates localized slip.

If dilatancy stabilizes slip before thermal
weakening onset - slow slip.

If dilatancy unable to limit slip speeds below
thermal weakening limit - fast slip.

Previous work:

|sothermal approximate diffusion [Segall and Rubin,
2007 AGU; Liu et al 2008, AGU] building on Segall
and Rice [1995] and Taylor and Rice [1998].

Slip weakening, thermo-poro dynamic, short (10 s)
integration times [Suzuki and Yamashita, 2009; JGR]

This work:

Rate-state proper thermo-poro diffusion, quasi-
dynamic, integrated over many cycles (centuries).

—_————
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* High Vp/Vs

» Low Stress Drop

 Available Dehydration reactions

Vp/Vs Ratio

Depth (km)

[Peacock et al., 2002]

100
Distance (km)
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Approach

* Include only well documented (if not fully understood) fault
physics.

 To the extent possible, use physical parameters based on
laboratory experiments and field observations.

* Employ efficient numerical methods that permit simulation
of many slow-slip and earthquake cycles. Approximations:

2 dimensional elasticity, 1D fault
 Limit of very thin shear zone
» Approximate elastodynamics

« Compare simulations with slow-slip observables.
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Dilation (um)
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Constitutive Law for Dilatancy: ¢ inelastic porosity, Segall and Rice [1995]

dt Vo

€ ~ 10~*, based on fits to Marone [1990] lab data.

B8 .. —dl (¢ — ¢bss) where 8., = €log (l’-)
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Momentum Balance On Fault [e.g., Rice 1993]
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~~ —~  frictional resistance | et
shear stress radiation damping

i : Shear Modulus, § : Slip, f : friction coefficient, v : slip speed, @ : “state”

Rate state friction: Ruina [1983]; Dieterich [1979]; Linker and Dieterich [1992].
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Heat & Pore-Fluid Transport for Thin (h — 0) Shear Zone:

ot ... O°T -
ot ay? ymo  20CpCen
dp &p oT ap|  h¢

ot = Mgy T AE 0y|,o  2Bchya

Shear Hcatmg

Thermal and hydraulic diffusivity, c», ¢y, density, p, heat capacity, ¢, thermal
coupling parameter, A = 1MPa/°C, fluid + pore compressibility, 3.
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o Rate-State: a/b< 1, f/b~30, W/h* fault width, where

dep/(1 =) Nucleation dimension

h G-p)b-2)" (drained)

e Thermo-Poro: E,, Er, G/ Chyd

o Other: a/fy (Linker-Dieterich), uv™/2b(c—p™)v, < 1 (radiation damping)
Dilatancy to Shear Heating Efficiency

2 -wm (1) ()
Er  fNB(o - p*) \d:) \Chya/

Low effective normal stress favors dilatancy — stable slip.
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a/b =0.9, Wh =30
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Log Slip-Rate: o =3 MPa; a/b = 0.9; W/h = 30
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Log(Sliprate): W80S50
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Log(Sliprate): W60S100
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Iog‘o(sllp speed) [m/s]
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Dynamic Event Nucleates at
Edge of ETS zone

Logm Slip Speed, m/s Stress, MPa
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From linearized analysis of single-degree of freedom system:

T ~ 2n (:ch) ‘/ f 5 [1 + éff/Ei’;)F(a/b)] G(W/h")
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Low Frequency Earthquakes

LFE moment: My ~ 3 x 10! N-m, [Ide, 2007]

Duration: 7'~ 0.3 s, [Ide, 2007; Shelly et al, 2007]

Moment rate: .\'/.;, ~ 10" N-m/s.

Challenge: Small areas of the plate interface must accelerate to
slip-speeds sufficient to radiate seismic waves, without dynamic
rupture continuing outside the LFE source region.

Question: Is dilatancy sufficient to quench the instability, when
ruptures reach the low-permeability, low effective stress
surroundings? Or does thermal pressurization promote runaway
dynamic rupture?
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Test: Local regions w/ infinite
diffusivity

Low Frequency Events? Low Frequency Events?

Time, solver steps
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Local areas of high slip-speed decelerate after encountering
low permeability background.
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Conclusions

 Dilatancy allows slip to nucleate a low speeds but can limit
fast slip.

« High pore-pressure mitigates against frictional and thermal
weakening, thus favoring slow slip (consistent with
seismological observations).

* For plausible material parameters, the predicted depth
range, moment-rate, and repeat period are comparable to
observations.

« Slow-slip behavior occurs for a broad range of parameters.

» Behavior highly dependent on depth dependent effective
stress, as well as frictional properties.
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Implications/Future Work

 For large part of parameter space, a slower phase is
observed: Implication for inter-ETS tremor/slip?
Need 3D models.

« Simple models exhibit variable behavior throughout
seismic cycle. Slow-slip events penetrate into
locked zone?

Monday, November 1, 2010



Implications/Future Work

 Slow slip may evolve into dynamic rupture.
Diagnostic behavior prior to dynamic event?

« Coseismic (or rapid postseismic?) rupture into ETS
zone? Implications for seismic hazard. Models with
finite thickness shear zones (coming) will reduce the
coseismic stress drop.
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