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Possible Mechanisms for Slow Slip

• Change in frictional behavior at high slip speed [e.g., Shibazaki 
and Iio, 2003; Shibazaki and Shimamoto, 2007].

• Rate-state friction near neutral stability  [Yoshida and Kato, 2003; 
Kuroki et al, 2004; Liu and Rice, 2005; 2007; Rubin, 2008].

•Stable friction perturbed from steady-state [Perfittini and Ampuero, 
2009].

• Dilatant stabilization [Rice, 1975, Rice and Simons , 1976, 
Rudnicki, 1979]; in rate-state friction context [Segall and Rice, 
1995; Segall and Rubin, 2007-9 AGU; Segall et al, 2010 in press, 
Liu and Rubin, in press], also Suzuki and Yamashita [2008, AGU; 
JGR, 2009].
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Rate-State Friction Alone:
Goldilocks Problem

• Slip-zone too small -> No transient.
• Slip-zone too large -> Dynamic slip.
• “Just right” range small for preferred slip-law.
• Dilatancy removes this problem.

Segall, Rubin, Bradley, Rice,JGR  in press.
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Hypothesis

versus

Velocity weakening rate-state friction 
nucleates localized slip.

If dilatancy stabilizes slip before thermal 
weakening onset ! slow slip.

If dilatancy unable to limit slip speeds below 
thermal weakening limit ! fast slip.

Dilatancy: stabilizing

Thermal pressurization:
     de-stabilizing

Previous work:

Isothermal approximate diffusion  [Segall and Rubin, 
2007 AGU; Liu  et al 2008,  AGU] building on Segall 
and Rice [1995] and Taylor and Rice [1998]. 

Slip weakening, thermo-poro dynamic, short (10 s) 
integration times [Suzuki and Yamashita, 2009; JGR]

This work: 

Rate-state proper thermo-poro diffusion, quasi-
dynamic, integrated over many cycles (centuries).
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High Pore-Pressure in ETS zones
• High Vp/Vs 

• Low Stress Drop

• Available Dehydration reactions

Shelly et al, 2006 

Audet et al, (Nature, 2009), conclude that near lithostatic pore-presure in slab crust.

Thermal pressurization weak at low effective stress ! stable slip.
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Approach

• Include only well documented (if not fully understood) fault 
physics.

• To the extent possible, use physical parameters based on 
laboratory experiments and field observations.

• Employ efficient numerical methods that permit simulation 
of many slow-slip and earthquake cycles. Approximations:

• 2 dimensional elasticity, 1D fault

• Limit of very thin shear zone

• Approximate elastodynamics

• Compare simulations with slow-slip observables.
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Samuelson, Elsworth, Marone, (2009)

Dilatancy/Compaction:
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y

Friction + Dilatancy
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Fluid & Heat Transport for Thin Shear Zone

[e.g., w/out dilatancy, Rice, 2006]
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Nucleation dimension
 (drained)
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Stable at Low Effective Stress (Fixed Length)
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Space-Time Evolution: 3 MPa Effective Stress

Log
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Slow Slip Phase: 3 MPa Effective Stress
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Slip Rate and Period in Range of Observations

Increasing Dilatancy or 
Decreasing Eff. Stress

Increasing Slip-zone Length

Slow-slip like behavior occurs for broad parameter 
range. (Isothermal calculations [Segall et al, 2010 in press])
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Depth Dependent Properties and Effective Stress

• Friction distribution loosely based on lab data for gabbro from  He et al [2007], 
mapped to depth using Cascadia geotherm [Peacock, 2009],  similar to Liu 
and Rice [2009].

• Very low effective stress in suggested ETS region, modest effective stress up-
dip.

No thermal 
pressurization where 
a-b  > 0

Transition at 510 C
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Slow slip events, occur spontaneously and may 
penetrate farther up-dip with time.
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Inter-ETS propagation

Inter-ETS phase may be reflected in 
tremor and may be detectable in inter-
event GPS velocities
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For sufficiently wide low stress zones, SSE 
ultimately nucleate dynamic events
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Title
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Dynamic Event Nucleates at 
Edge of ETS zone
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SSE Repeat Period 

Nominal Case Decrease dc by 2x
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Psedo 3D Deformation Model:  Inter-ETS sliprate

McCaffrey et al, 2007, inversion

Slip speed a function of depth only, as 
determined by  2D physical model.
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‘Data’ courtesy R. McCaffery

Pseudo-3D Fit to Inter-ETS Deformation
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Space-Time Relationship between Slow-Slip 
and Tremor

Bartlow, Miyazaki, and Segall, 
this meeting. 
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Low Frequency Earthquakes

Challenge:  Small areas of the plate interface must accelerate to 
slip-speeds sufficient to radiate seismic waves, without dynamic 
rupture continuing outside the LFE source region.

Hypothesis: Local regions of high permeability, perhaps due to 
fractures, allow rapid drainage and fast slip.  Stressed by slow-slip 
in the surrounding regions.

Question:  Is dilatancy sufficient to quench the instability, when 
ruptures reach the low-permeability, low effective stress 
surroundings? Or does thermal pressurization promote runaway 
dynamic rupture? 
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Test: Local regions w/ infinite 
diffusivity

Chen, Bradley, Segall

Local areas of high slip-speed decelerate after encountering 
low permeability background.
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Conclusions

• Dilatancy allows slip to nucleate a low speeds but can limit 
fast slip.

• High pore-pressure mitigates against frictional and thermal 
weakening, thus favoring slow slip (consistent with 
seismological observations).

• For plausible material parameters, the predicted depth 
range, moment-rate, and  repeat period are comparable to 
observations.

• Slow-slip behavior occurs for a broad range of parameters.

• Behavior highly dependent on depth dependent effective 
stress, as well as frictional properties.
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Implications/Future Work

• For large part of parameter space, a slower phase is 
observed:  Implication for inter-ETS tremor/slip? 
Need 3D models. 

• For simple parameter distributions, transition 
between locked and steady slip at plate-velocity 
changes through seismic cycle: Implications for 
geodetic observations. 

• Simple models exhibit variable behavior throughout 
seismic cycle. Slow-slip events penetrate into 
locked zone?
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Implications/Future Work

• Slow slip may evolve into dynamic rupture. 
Diagnostic behavior prior to dynamic event?

• For simple distributions of material properties, slip in 
the ETS zone lags plate-rate.  Consistent with 
geodetic observations?

• Coseismic (or rapid postseismic?) rupture into ETS 
zone? Implications for seismic hazard. Models with 
finite thickness shear zones (coming) will reduce the    
coseismic stress drop. 

• Fractures within the ETS zone allow rapid drainage 
and may provide a mechanisms for LFEs.

Monday, November 1, 2010


