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MODE OF SLIP

Natural faults can relieve the accumulated stress in very
different ways, not limited to continuous aseismic sliding and
earthquakes (Peng & Gomberg, 2010)

The mode of slip depends on the intrinsic constitutive
processes governing faulting episodes g(E,t,x)

The physical interpretation of modern observations of slip
episodes (tremors, slow slip, earthquakes, afterslip, etc...)
requires the understanding of the state of stress and
constitutive properties of fault zones as well as the stress
evolution caused by tectonic processes and stress
perturbations
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FAULT SYSTEMS

A key general issue:

The need to reconcile geological observations of natural faults and
seismological & geodetic data with laboratory tests on experimental

faults
geology
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Courtesy by Eric Daub and Jean Carlson
Daub, E. G., and J. M. Carlson, Friction, Fracture, and Earthquakes, Ann. Rev. Cond. Matter Phys. 1, 397-418 (2010).

Monday, November 1, 2010




4 | y 9 '
Geological Observations
Geological observations reveal that faulting and earthquakes
occur in a complex volume, named the fault zone.

Despite extremely thin, Principal Slipping Zones have a finite
thickness

Shear zone where dynamic
strain is localized. coseismic slip
Fluid flow & episodes
porosity evolution and other
transients

Damage zone structure is extremely variable
Fault core properties are poorly known
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SELECT A SCALE OF MACROSCOPICITY

Definition of macroscopic physical quantities (slip, slip-rate, stress,...)
on a virtual mathematical plane of zero thickness

Conscious adoption of a phenomenological description
Friction should be considered in a macroscopic sense
Shear traction (i.e., stress) is friction

Macroscopic frictional work contains all the mechanical energy
absorbed within the fault zone

Macroscopically elastic outside the fault zone

1]

fault

zone
thickness

U

Macroscopically inelastic inside the fault zone
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A PHENOMENOLOGICAL CONTACT LAW

In this framework a constitutive law is a
phenomenological contact law

Wi/ v WL, B }"07 h, o, Ce) Gneff(on’ pfluid)

It should contain a memory of previous slip episodes,

as the R&S evolution law % = f(W,u,V,D,x,)

It should explicitly contain length and/or time scale
parameters

We can use Rate & State Friction with this meaning
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SPRING SLIDER SIMULATIONS

Boatwrigth & Cocco JGR 1996 = K
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FRICTIONAL CONSTRAINTS TO FAULTING
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FRICTIONAL CONSTRAINTS TO FAULTING

Spring slider simulations
under a constant tectonic
loading
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FRICTIONAL CONSTRAINTS TO FAULTING
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FRICTIONAL CONSTRAINTS TO FAULTING

Spring slider simulations
under an abrupt applied
load

BOATWRIGHT AND COCCO: FRICTIONAL CONSTRAINTS ON FAULTING
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FRICTIONAL CONSTRAINTS TO FAULTING
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FRICTIONAL CONSTRAINTS TO FAULTING

Spring slider response under ‘ ‘ 3
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RUPTURE PROPAGATION ON A HETEROGENEOUS FAULT
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CONSTRAINING DYNAMIC FAULT WEAKENING

This means:

to infer the stress evolution as a function of time
and slip at single points on the fault, to determine
maximum slip, peak slip-rate, duration of slip
episodes, .....

to image the distribution on the fault plane of the
main physical quantities to constrain the slip
histories and the |local rupture velocity
characterizing the spatial propagation

...... at least for earthquakes
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IMPORTANCE OF SLIP RATE

By means of slip velocity history we can infer the traction change

evolution on the fault plane

We solve the Elastodynamic equation using the rupture history as a

boundary condition on the fault

O'(X, t) — —ﬂAu(x f) + jjj Au(é ‘L')K(x —_ 5 [— T)d&d'l' Fukuyama and Madariaga (1998)

/ /

Au(i,t) = f(t t(1))xd(1)

Slip Velocity time history on the fault

—

L wocly I

’’’’

example: Slip distribution and rupture time
from kinematic inversion
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ADOPTED SOURCE TIME FUNCTIONS

Different source time functions are currently adopted
in the literature to solve both the forward and the
inverse problem and to model recorded waveforms.

If we limit our tasks to fitting observed ground
motions and geodetic data, this choice is quite
arbitrary and allows the achievement of good
modelling results.

However, if the inferred rupture histories are used to
constrain or determine dynamic source parameters,
this choice can heavily affect the results.

Thus, a key issue in modelling ground motion
waveforms to image earthquake ruptures and
determine source parameters is the adoption of
dynamically consistent source time functions.
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Tinti et al., 2009, GIJI
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Figure 2: Slip and stress drop distnbutions on the fault plane for the two target dynamic models
(top Model 2 and bottom Mode! 3).

Tinti et al., 2009, GIJI
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Tinti et al., 2009, GIJI
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THE YOFFE FUNCTION

We have adopted the Yoffe
function in our modelling ’

Nielsen & Madariaga (2000)

Tinti e al. BSSA (2005)
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Effacrs oT STF on
-D:/Dw:

D. estimates depend on T__..

This means that inverting waveforms
with a limited temporal resolution
overestimates the real T, and

therefore D..

D. estimates depend on rise time

Using different values of rise time
also affects D. and peak slip velocityv,

they botl T =
times. D, 4[| ==Dci
\, I

‘ x AO'[,

r
/
peak

Tinti et al., 2005; Cocco et al., 2009
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A good fit to slip velocity does not imply a good fit in
traction evolution & slip weakening curves

Fit with a Yoffe function and T,.. equal to
the real value inferred from modeling results
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A good fit to slip velocity does not imply a good fit in
traction evolution & slip weakening curves

Fit with a Yoffe function and T,.. equal to

the real value inferred from modeling results
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A good fit to slip velocity does not imply a good fit in
traction evolution & slip weakening curves

Fit with a Yoffe function and T,.. equal to

the real value inferred from modeling results
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A RELEVANT OUTCOME

This results has been inferred for earthquake
slip histories

However, it might be significant for all those
orocesses involving extended sources and a
oropagating perturbative front

We have also to remind that, in such a
phenomenological approach, rupture velocity is
a macroscopic parameter
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IMPACT ON GEOPHYSICAL DATA INVERSION

We have used the non-linear inversion :
approach proposed by Piatanesi et al. (2007)

| Stage: building-up the model ensemble by sampling the model space
through the simulated annealing algorithm

STF in dsplacement (m)

Il Stage: ensemble inference (weighted average model, standard
deviation)

This method don’t look only at the best model
(usually an extreme model) but it tries to
extract the most stable features of the
rupture process

STF (msec)
N

The slip velocity history on each point on the
fault is determined by the shape of the a
priori assumed source time function (single
window approach)
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STF: Kinematic Parameters

.~ BOX . - COSs I!M:mY _ YOFFE 0.25 - YOFFE 0.4
' 19 . ) 19 .
L Mg =157x10 { Mo=146x10 | \ Mg = 1.46x10 :

E(m)=0.26 | E(m)=0.23| E@m)=0.24 | E(m)=0.21

2000 TOTTORI EARTHQUAKE JAPAN Tirbistitnabaiiys

Monday, November 1, 2010




SOME PRELIMINARY OUTCOMES

The adoption of the STF does matter !
Implications for dynamic parameters

Determining uncertainties of inverted model
parameters is mandatory

More efforts needed to improve the statistical
analysis of the ensemble inference

(Bayesian approach, etc....)

Kinematic inversions require the use of
physically consistent STFs

.3
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Dynamic traction evolution

® ‘Traction evolution is calculated from rupture
histories imaged by inverting recorded data, but
using different STFE to solve the forward
problem
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CONCLUSIONS & KEY QUESTIONS #1

Need to reconcile geological, geophysical and laboratory
observations

Our phenomenological approach does not allow us to
distinguish the meso- & micro-scale processes controlling
dynamic fault weakening

The complexity of fault zones and the diversity of frictional
behaviours can explain the variability of the mode of slip

Slip velocity contains many info of the traction evolution and
dynamic fault weakening, but unfortunately it is poorly
Known

This lack of knowledge also depends on the poor control on
spatial resolution, slip gradients and neighbours interactions
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- Foreshock Sequence
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- Foreshock Sequence
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/" Time series of V o/ Vs values for from January 2009 to Apnl 6th 2009
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/
Vp/Vs variations in 2009 around L'Aquila
(before the main shock)
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The earthquake initiation

The earthquake has a weak
initiation with a nucleation phase
followed by a strong “breakaway”
phase (Beroza & Ellsworth, 1996).

The duration of the slow initial
moment release process is nearly
0.8-0.9 sec and agrees with the
scaling proposed by Beroza &
Ellsworth.

The onset of the impulsive
“breakaway” phase (IP) is located
nearly 2 km up-dip from the
nucleation point (EP).

K Elaborated by Bill Ellsworth, USGS, Menlo Park
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Complex Rupture Initiation

Emergent onset
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Location of the EP and IP hypocenters
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CO- and POST-seismic slip on the main-shock fault
(Cheloni et al., .G.JI, 2010, & Cirella et al., GRL, 2009)

Coseismic Slip Afterslip

0 20 40 60 B0 100

0 5 10 15 20 25 0 5 10 15 20

Distance (km) Distance (km)
Afterslip occurred at the edges of the main coseismic patches

releasing, in the first 60 d after the main shock, a postseismic
moment of 6.5 x 1077 Nm, equivalent to a Mw 5.8 earthquake.

Downdip depth (km)
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CONCLUSIONS & KEY QUESTIONS #2

Need to adopt dynamic constrains, to model high-frequency waves, to adopt
dynamically consistent STFs in waveform inversions as well as to develop
new inversion algorithms, which are independent of the adoption of a
particular source time function

Can we model transients with STFs differing from those of earthquakes only
for long durations and small V., ?

The 2009 L'Aquila earthquake displays a complex initiation and rupture
propagation, with afterslip and postseismic effects,

High rupture speed (super-shear?) in the up-dip propagation (= 4+4.4 km/s)

No precursory signals have been observed. No evidence so far of tremors
and slow slip events.
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