Fault roots, shear zones, and lithospheric deformation from receiver functions and rock sample anisotropy

Vera Schulte-Pelkum, Kevin Mahan

CU Boulder

Sarah Brownlee Wayne State U

Thorsten Becker UT Austin

> Ray Russo U Florida

Phil Orlandini,

Cailey Condit,

funding: NSF - EarthScope, Geophysics, Tectonics

Anissha Raju, CU Boulder

Outline

Faults and shear zones	Crustal anisotropy	RF imaging	Interpretation
Roots of faults?	crustal rock tensor collection	Method	listric fault fabric through lithosphere
		Results: Denali Fault zone Rocky Mountains/	role of inheritance?
		Wasatch Southern California, Basin & Range	

Motivation

Roots of faults?

Strain localization in mantle?

What does crustal anisotropy look like?

"Ground truth" from ~100 crustal rock full elasticity tensors eclogite quartzite 15 granulite granofels number of samples sandstone 10calc silicate 5 gneiss 0 amphibolite 5 10 15 20 25 0 % anisotropy plutonic Brownlee, Schulte-Pelkum, Raju, Mahan, Condit, Orlandini schist 2017, submitted (Tectonics)

Faults/shear zonesCrustal anisotropyRF imagingInterpretation

Anisotropy symmetry type by composition

Is hexagonal anisotropy elliptical?

Typical assumption: elliptical anisotropy

Faults/shear zonesCrustal anisotropyRF imagingInterpretation

Ellipticity in rock tensor compilation

Crustal tensor compilation: 77 % slow axis symmetry, 23 % fast axis

Brownlee et al., 2017, submitted

Faults/shear zones	Crus
--------------------	------

tal anisotropy

RF imaging

How do receiver functions see anisotropy?

Full rock tensors: maximum RF amplitude

Hexagonal component:

influence of ellipticity assumption

not elliptical

strong: gneiss, schists (fast orientations: foliation plane)

likely slow-axis symmetry

hexagonal ok to assume

Crustal anisotropy cheatsheet:

Faults/shear zones

Crustal anisotropy

RF imaging

Crustal average of dipping foliation signal strength

Schulte-Pelkum and Mahan, 2014, EPSL

|--|

Foliation strike: Rockies, intermountain West, Basin & Range

Foliation strike: California plate boundary

foliation strike ~parallel faults

Depths through crust 36° into lithospheric mantle Distributed fabric at 35° depth? 50 34° 40 05 depth (km) fault 33° $A1_{\text{max}}$ 0.1 strike of dipping km 10 0.2 foliation/contrast 0.3 100 0 32° –119° –121° –118° –117° –116° –115° -120° **-114°**

Schulte-Pelkum and Mahan, 2014, EPSL

Faults/shear zonesCrustal anisotropyRF imagingInterpretation	Faults/shear zones	Crustal anisotropy	RF imaging	Interpretation
--	--------------------	--------------------	-------------------	----------------

Shear fabric orientation at depth?

Faults/shear zones Crustal anisotropy

RF imaging

Listric transform faults below ~ 10 km based on seismicity

How fault-parallel are RF strikes?

better correlation than RFs to topographic range strikes

Faults/shear zones C

Crustal anisotropy

RF imaging

Current deformation, or inherited fabric from Farallon subduction?

Farallon average subduction strike, rotated by McQuarrie & Wernicke 2005 reconstruction

Faults/shear zones Crus

Crustal anisotropy

RF imaging

Orientation comparison: Pn fast vs. Farallon subduction strike

Pn Buehler & Shearer, 2014

Faults/shear zones Crustal anisotropy

RF imaging

Conclusions

Structural geology at depth:

4-D evolution of the continent

Exploring the Structure and Evolution of the North American Continent

Conclusions

RF azimuthal conversions (not splitting!): image narrow shear zones in crust, depth control

crustal anisotropy:

- hexagonal good assumption
- mostly slow axis anisotropy, even amphibolites
- ellipticity is not a good assumption

foliation strikes from RF ~parallel faults, often coherent through lower crust

Faults/shear zone Crustal anisotrop

RF imaging

Conclusions

Orientation comparison: local S splitting vs. faults

Local splits: microcracks?

1. Motivation

2. Method

3. Results

4. Conclusions

Orientation comparison: GPS stretch vs. faults

1. Motivation

2. Method

3. Results

4. Conclusions

Robust strike, depth; distinction between dipping interface and plunging axis anisotropy

Summary: image faults and narrow shear zones with itereively functions amplitud

Seismic anisotropy methods

1. Motivation

2. Method

3. Results

4. Conclusions

Orientation comparison histograms oblique

٧f.