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Structure and evolution of the North American
continent: a story of orogenesis and rifting
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Large-scale and regional views of the North American
continent from EarthScope data
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have been affected by orogenesis and rifting in the past. Yang et al,, 2015



Insights into how orogenesis and rifting modify the
continental lithosphere from EarthScope studies

 Afocus on the eastern North America passive margin

* New insights into lithospheric deformation from
seismic anisotropy: how do orogenesis and rifting
deform the lithosphere?

A detailed look at crustal structure beneath the central
Appalachians: Crustal evolution in an ancient orogen

* Post-rifting modification of ENAM via lithospheric
removal and implications




The Eastern North American Margin (ENAM): two complete Wilson
cycles of orogenesis and rifting, and ~200 Ma of post-rift evolution
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Is present-day lithospheric structure controlled by
Appalachian orogenesis? By Mesozoic rifting? By earlier
processes? Or has the lithosphere been modified post-rifting
as the passive margin evolved?



EarthScope and GeoPRISMS in ENAM: Truly transformative datasets
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Seismic anisotropy beneath continental regions: multiple layers?
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SKS splitting beneath ENAM from the TA: complex patterns
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SKS splitting beneath ENAM from the TA: interpretation?

-70

In the north: fast directions generally
parallel to absolute plate motion, with
some complications (multiple layers)?

In the central/southern Appalachians: fast
directions parallel to strike of topography,
including orogenic bend in Pennsylvania

In the south: variable patterns, with null
stations (little apparent SKS splitting)
dominating in the Coastal Plain.
Relationship to APM not clear — possible
lithospheric control?

Long et al., 2016



SKS splitting beneath ENAM: multiple interpretations...
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Interpretation: mostly present-day Interpretation: mostly reflects Interpretation: mostly reflects
mantle flow in north; mostly present-day mantle flow, including  lithospheric anisotropy, little
lithospheric anisotropy in south, with  plate motion parallel shear and contribution from asthenosphere.
major contribution from Appalachian  flow around continental keel. Little  Major contributions from
(orogenic) deformation. contribution from lithosphere. (Mesozoic) rifting (in north) and

Appalachian orogenesis.



New results from the ENAM CSE broadband OBS deployment
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Offshore North Carolina, SKS
fast directions are uniformly
margin-parallel. Not parallel to

" present-day plate motion, and

not parallel to fossil spreading
direction.

Intriguing possibilities:

* complex, 3D asthenospheric

flow field at the edge of the
North American continent? Or,
a lithospheric remnant of
continental rifting?



Ongoing work: Anisotropic receiver function analysis in eastern US
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MAGIC (Mid-Atlantic Geophysical Integrative Collaboration)
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Multi-disciplinary collaboration funded by
EarthScope/GeoPRISMS including seismology (M. Long, Yale;
M. Benoit, TCNJ), geodynamics (S. King, Virginia Tech), and
geomorphology (E. Kirby, Oregon State). Companion
magnetotelluric array (MT) by R. Evans, WHOI.

Transect across the central
Appalachians that crosses a
number of physiographic
provinces, inherited structures,

Appalachian topography, Central
VA seismic zone (CVSZ), and

Eocene volcanics.
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The MAGIC seismic deployment
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Deployment of 28 broadband stations. Some (~7) deployed in late 2013, most deployed in
late 2014, for 2-3 years of data collection. Stations demobilized October 2016.



Results from MAGIC: Crustal structure from Ps receiver functions

H=47.0+2.5km, Vp/Vs = 1.90 + 0.05, Poisson’s Ratio = 0.310+ 0.014
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We identify a VERY sharp step (~¥15 km) in the Moho beneath central VA — near Pe=2700kgim” |1 5700 kg/m?®
location of Eocene basalts. We also find that the eastern Appalachians are
overcompensated (that is, Moho is deeper than expected given topography). hI
- . - . - 3
Suggests lower crust beneath Appalachians is denser than typical continental crust. | Pm3%%kdm

Also notable: crustal thinning beneath Rome Trough (early Cambrian rifting).
hmountain = hroot (Om - Pc)/Pc



Results from MAGIC: Lithospheric structure from Sp RFs
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Common conversion point (CCP) stack of S-to-P RFs reveals dramatic lithospheric
thinning to the east — consistent with lithospheric removal beneath Eocene basalts



Results from MAGIC: Magnetotelluric imaging
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Resistivity model from MT measurements by Rob Evans along the MAGIC line also yields
evidence for lithospheric thinning to the east, with thin lithosphere under Eocene volcanics.
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Results from MAGIC: SKS splitting
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Thick crust and overcompensated topography beneath central
Appalachians: Implications?

Preliminary Crustal Thickness Measurements
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VERY sharp jump in crustal thickness across the eastern boundary of Appalachian topography. Moho is
deeper than expected if topography was isostatically compensated. Suggests either 1) lithosphere is
extremely rigid, or 2) lower crustal density has increased over time (metamorphic reactions; e.g.
Williams et al., 2014), leading to diminished root buoyancy.



Lithospheric removal beneath Eocene basalts: evidence for
significant post-rift modification of lithospheric structure
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Evidence from tomography (work by
Lara Wagner and others) and
receiver functions consistent with
lithospheric delamination.
Outstanding questions? Why? What
controlled location/timing?

Wagner et al., in prep.



Seismic anisotropy beneath the central Appalachians: Orogen-
parallel deformation of the mantle lithosphere?
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Sharp change in anisotropy at eastern edge of present-day high topography suggests transition in
lithospheric anisotropy, from NE-SW fast directions to E-W. Thin lithosphere cannot account for entire
delay time (~1 sec), but lithospheric contribution seems to be required. A speculative idea: could E-W
directions to the east of mountains associated with Mesozoic rifting?



Summary: What have we learned about orogenesis, rifting, and post-
rift evolution beneath ENAM?

* Present-day Appalachian topography associated with thick crustal root; may reflect
time-progressive metamorphic reactions and increased lower crustal density.

* Evidence for deformation of mantle lithosphere due to Appalachian orogenesis,
with sharp lateral transition in anisotropy geometry.

* Signature of late Cambrian continental rifting evidence in thinned crust beneath
Rome Trough in western WV. E-W anisotropy fast directions in central VA
associated with Mesozoic rifting? Do offshore SKS splits reflect present-day flow or
lithospheric deformation in early stages of rift-to-drift transition?

* Post-rift modification of central Appalachian lithosphere has been extensive, with
lithospheric removal resulting in Eocene volcanism. How universal a process is this
in old orogens?



