Seismic structure beneath USArray and implications for tectonic and magmatic activity away from plate boundaries

4.1

Brandon Schmandt

Help from friends:

Fan-Chi Lin, University of Utah Steve Hansen, University of New Mexico Ken Dueker, University of Wyoming

4.6

4.9

Seismic structure beneath USArray and implications for tectonic and magmatic activity away from plate boundaries

- Yellowstone Hotspot: clearest (~only) example of super-adiabatic upwelling
- Long-lived magmatic scars and small-scale convection in the eastern U.S.
- Supporting topography of young and old orogens

Broadband data at the IRIS DMC

1. The Yellowstone Hotspot,

The clearest (only?) example of ongoing super-adiabatic upwelling

The Yellowstone Hotspot

- High ³He/⁴He (Graham et al., 2009), up to ~18 R/Ra
- Radially symmetric geoid high, ~1000 km radius
- voluminous basalt intrusions have densified the Snake
 River Plain crust

*clearly not in isolation of tectonic conditions favorable to volcanism, but its buoyancy and melt productivity are execptional

USArray tomography beneath Yellowstone

A vertically heterogeneous low-velocity anomaly extending into the lower mantle in all USArray tomography models. Three examples:

-70°

4'9

-80°

-120°

-110°

43

-100°

Vs [km/s]

-90°

Slower than beneath East Pacific Rise at same depth [e.g., Schutt and Dueker, 2008].

Converted wave imaging of the mantle transition zone with USArray

(Dueker and Sheehan, 1997)

- Uppermost mantle Vs as low as ~3.9 km/s.

- Deeper low-velocity anomaly is correlated with thin MTZ

~100-200°C excess temperature

→ narrow hot upwelling from lower mantle. Depth of origin remains ambiguous.

+2.5

+4

2. Long-lived magmatic scars and small-scale convection in the eastern U.S.

Low velocity anomalies along the passive margin [Eaton and Frederiksen, 2007; Villemaire et al., 2012; Pollitz and Mooney, 2016; Menke et al., 2016]

Vs ~4.27 – 4.4 km/s Similar to lithosphere in western U.S. Faster than most Quaternary volcanic fields.

Generally not slow enough to require partial melt

2 anomalies are spatially linked to post-rifting magmatic events [e.g., Mazza et al., 2014; Eby, 1987; Heaman and Kjarsgaard, 2000]

~48 million years since magmatism [Mazza et al., 2014]

Very close spatial correlation

Northern Appalachian or New England Anomaly

~100 million years since magmatism [e.g., Eby, 1987]

Potential association with hotspot track [Eaton and Freriksen, 2007; Villemaire et al., 2012]

More ambiguous spatial correlation [e.g., Eaton and Frederiksen, 2007; Menke et al., 2016]

If TA spacing was much greater than 70 km we might have missed it

~48 million years since magmatism [Mazza et al., 2014]

Basalts consistent with decompression melting along dry solidus ~70-90 km depth [Mazza et al., 2014]

Mazza et al., 2014

Potential origins:

Delamination [Mazza et al., 2014]

Edge convection [e.g., King and Anderson, 1998]

Revised hotspot track [Chu et al., 2012]

Northern Appalachian or New England Anomaly

~100 million years since local magmatism [e.g., Eby, 1987]

Potential association with hotspot track

More ambiguous spatial correlation [e.g., Eaton and Frederiksen, 2007; Menke et al., 2016]

New England seamount chain Possible older continental extension in kimberlite magmatism [Heaman and Kjarsgaard, 2000]

Northern Appalachian or New England Anomaly

~100 million years since magmatism [e.g., Eby, 1987]

Potential association with hotspot track

More ambiguous spatial correlation [e.g., Eaton and Frederiksen, 2007; Menke et al., 2016]

Northern Appalachian or New England Anomaly

~100 million years since magmatism [e.g., Eby, 1987]

Potential association with hotspot track

More ambiguous spatial correlation [e.g., Eaton and Frederiksen, 2007; Menke et al., 2016]

Edge convection, possibly unrelated to Cretaceous magmatism [Menke et al., 2016]

Menke et al., 2016; King and Anderson, 1998

3. Isostatic support for topography in young and old orogens

U.S. Crust thickness versus elevation

West of Rocky Mountain Front (red), correlation = 0.51

East of RMF (blue), correlation = 0.61

→2 distinct populations east/west of RMF with much greater correlation
→Greater scatter west of RMF

Evaluating Airy Isostasy with global reference densities

What density structure can explain the trends east and west of the Rocky Mountain Front?

Airy Crust thickness = H + $\left(\frac{\rho UC}{\rho UM - \rho LC}\right)$ Elevation

Lower reference crust thickness value reflects long-wavelength mantle buoyancy, consistent with thermal origin

~500-700 m of thermal support from upper mantle

Extreme low velocity areas (< ~4.25) are truncated to address partial melts effects [Levandowski et al., 2014]

Location of contrast at the RMF implies reduction of lower crust densities by Laramide to post-Laramide processes (heating, hydration?, delamination) rather than a product of Precambrian inheritance

Links between seismic structure and tectonic & magmatic activity across the continent

- Yellowstone Hotspot: clearest (~only) example of super-adiabatic upwelling
- Long-lived magmatic scars and small-scale convection in the eastern U.S.
 - Ongoing edge convection and/or localized delamination
- Supporting topography of young and old orogens
 - Larger crust/mantle density contrast west of Rocky Mountain Front
 - Pervasive Laramide and post-Laramide modification of lower crust
 - Small density contrast east of Appalachian, Grenville difficult to explain without mafic lower crust

Broadband data at the IRIS DMC

Outstanding data resources. Lots left to test and explore!