Impact of Farallon subduction on the evolution of the North American continent

Lijun Liu, Quan Zhou University of Illinois

Colorado Plateau

Core-mantle boundary

Farallon slab

More recent seismic tomography

More recent seismic tomography

North American Tectonics

Elevation change:

>100 Ma: Above sea level

100 - 65 Ma: Western Interior Seaway (WIS)

< 80 Ma: Western U.S. uplift (no less than 2 km uplift)

North American Tectonics

North American Tectonics

Subduction since the Cretaceous

Forward simulation of Earth evolution

Inverse simulation of Earth evolution

Inverse simulation of Earth evolution

Invert Farallon subduction using pre-EarthScope tomography

(Liu, Rev. Geophys., 2015)

Invert Farallon subduction using pre-EarthScope tomography

Time-dependent model requires time-dependent constraints

Dynamic subsidence due to flat-slab subduction forming the WIS

BH1

BH2 100

BH3

100

90

100

90

80

90

Age(Ma) observed subsidence ηuw

1.0

1.0

70

80

80

Te (°C) 160

160

160

240

(Liu et al., Science, 2008)

(Replotted based on 12 Liu et al., Science, 2008)

Eastward propagating subsidence across N. America

Dynamic Topography

Age = 100.00 Ma

(Liu, Nature Geosci., 2014)

Subsidence & uplift of Colorado Plateau (CP)

Debated Colorado Plateau uplift history

Pre-USArray tomography No hot mantle below west US Time-dependent constraints

Pre-USArray tomography Hot western US mantle Constrained by 0-Ma data Cenozoic Colorado Plateau uplift due to lithosphere warming

(Liu & Gurnis, *Geology*, 2010)

(Moucha et al., GRL, 2009)

(Roy et al., Nature, 2009)

Distinct Mantle Seismic Domains

Forward simulation of Farallon subduction

 500 km	 300 km	 100 km	 20 km
 400 km	 200 km	50 km	 20 cm/yr

Miocene slab segmentation attributed to Columbia River flood basalt

(Liu & Stegman, *Nature*, 2012)

LIP formation due to slab tearing

Forward simulation of slab-plume interaction

(Leonard & Liu, GRL, 2016)

Hybrid data assimilation: Forward + Adjoint

Data constraints:

- Seismic tomography
- Gravity
- Past plate motions
- Seafloor age history
- B&R kinematics

Simultaneously solves:

- Heat source of YS hotspot
- WUS seismic anisotropy
- Topography history

[See poster # 12]

800 km

(Zhou et al., in revision)

[Used tomography: Schmandt & Lin, 2014]

20

Hybrid data assimilation

Hybrid data assimilation

Caused the peculiar western U.S. seismic anisotropy

Predicted vs. **observed** SKS from the slab model (*Liu & Stegman, 2011*).

WUS topography since 20 Ma

(Including both dynamic & isostatic topography)

- Hot mantle spreads laterally, resulting in small upward stress (uplift)
- <200 meters of uplift within western U.S. since 20 Ma
- Large-amplitude uplift along Plateau edges since 20 Ma

	Dynamic Topography (km)								
1.0	-0.5	Ó	0.5	1.0					

Implications on North American evolution

- The Colorado Plateau experienced up to ~1.2 km dynamic uplift (due to subduction & hot mantle) since 80 Ma, significantly less than the observed >2 km uplift.
- Other processes, such as lithosphere warming/alteration/foundering, should have isostatically increased WUS topography by up to 1 km.
 - Such lithosphere changes could have occurred during/after the Farallon flat-slab subduction.

Predicted flat-slab (Shatsky conjugate) subduction

(Liu et al., Nature Geosci., 2010)