A New Opportunity: Learning about Continents and
Earthquake Processes Using Induced Seismicity

Highlighting a subset of recent results in the interplay between
seismology, structure, and hydrogeology
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An explosion of instruments; an explosion of data

EarthScope
Transportable Array:
Green triangles

Generally active late
2009 to late 2011

Also stations from:
USGS
OGS
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Cornell
OoSsuU
Nanometrics
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Many thousands of recent earthquakes
captured by many hundreds (1000+)
Sensors

What have we learned, and what can we
learn, beyond operations and hazard?
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USGS Forecast for Damage from Natural and Induced Earthquakes in 2017
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Chance of damage
Highest chance

10% - 12%

5% — 10%

2% - 5%
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Lowest chance

https://earthquake.usgs.gov/hazards/induced/images/ProbDamageEQ_2017.pdf



Framing Questions:

Fault structure:
* How do fault damage zones participate in the earthquake process?
* How do faults connect between sediment and basement?

Fluid flow and migration in the upper crust:
* How do fluids and faults mechanically interact?
* Do fluids drive earthquakes? Do earthquakes drive fluids?

Earthquake sources and cycles:
* Aseismic slip vs cascading failure



Structure of a fault zone: Damage zone
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Rapidly deployed array:
OU, RAMP USGS, NetQuakes
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Precise
earthquake
locations during
an evolving
aftershock series

Can we learn
about damage
zones, fault
interactions, and
earthquake
nucleation?
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Fault zone delineation: Prague .. .. .. .. ..
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35.523
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Latitude

35.517

Savage et al., in revision
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Mw 5.8 2016 Pawnee
earthquake

* Main fault was not mapped
in prior data

* Difficult to map in available
subsurface data (well tops)

Interpretation:

* An immature fault with
disconnected, short strands

* Fault growth promoted by
high pore fluid pressure
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Seismicity in north-central
Oklahoma

* How are the large faults in
this region interacting with
fluid migration and

-95.0°

responding to the evolution ® 2009
of seismic activity? @ 12
iy
. . . ® 2015
* Which structures within the ® 2016
fault zone are seismically
active?

Faults from Marsh and Holland,
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A surprising result:

The majority of activity occurs

on unmapped faults

Mapped faults from 36.75°
Marsh and Holland, 2016

Faults identified by

seismic lineations

Faults that are failing are usually “well-
oriented”, but most are unmapped -
suggests pervasive faulting of
basement, and high availability of
critically-stressed structures at depth
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Why is there a seismic VS at DEPTH SLICE 4 KM
gap? -

* Low Vs within upper basement;
confined within the relatively
aseismic uplift

* The uplift is likely heavily fractured

and altered (e.g., Stevens et al.,
2016), with enhanced permeability;

inhibits pressure buildup
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Structural knowledge

* Pervasive fracture networks in the upper crust are activated in
the seismicity

 areas of enhanced fracturing may have less seismicity

» Effects of tectonic events from ~400 Ma remain evident and appear to strongly
iImpact current seismogenesis

* The majority of currently seismogenic faults are not mapped in
the sedimentary section

* Foreshocks represent both deformation within the damage zone
as well as the future rupture interface; foreshock spatial
localization could be harbinger of impending mainshock



How do fluids/fluid pressure migrate?
(Seismicity as an active tracer)
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How do fluids or pressure migrate in the crust?

(Seismicity as an active tracer)
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Summary: Fluid or pressure migration

* Multi-scale: Occurs at time scales of years over many tens of

kilometers, and at time scales of days on individual faults (~1
m/hr)

* Lateral pressure migration is inhibited, at least temporarily, by
large fault structures (an opportunity?)

* Pore pressure is coupled with poroelastic stress; poroelastic
effects have a stronger contribution at far offsets



What about
earthquake
nucleation; or
earthquake rupture
processes?
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Are there potentially precursors
or precursory phenomena?
Enhanced remote triggering
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travel time, s

Pushing the limits? Numerous quakes, numerous sensors
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Repeating earthquakes recorded on the
“standard” network

Data for ORID 5005

| 3
P |} d 1133 s |
P .l.l.l’.ii.li.‘i“il-!-l'-lli!i.li-l;:fji_"

SS iRk IHH!H!I ErdiIGEE N -

T e

iiil!’lb!ﬁ:lﬁxiﬁ!ﬁ! Xe i SIS EE NS
IRINE REFERELRAE i:l’%;?fx‘!igii

/ 'v’\
o

NNV

m"&wu« ‘

l

W

oy il

\

2| ti

Time in seconds
w

E g — ‘_E:...tilﬁjg :l :' g i i
Al £33 Xk ¢ JE (FI 3 E .
1S = i i i.isi %r— S5
5L Il!lilf&‘;l!ﬂlﬂ‘tili §§‘i E 23 ‘IE 5|
] y ¢ = 2 S ;
6o 5 1|o 15 2|o 215 30 7‘ 35 40 e ow Il_i‘lrif’;;eﬁé%berééa 00 50

Distance (km)




Comparison of waveforms: Majority have

0to 3.5 km

. correlation coefficient > 0.95
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Fig. 2. Cross-correlation measure of similarity, B, versus separation distance (offset) for more than
650,000 event comparison pairs. Permutations of event pairs from 1679 events occurring during the
period 1987 to 1992 and separated by 7.5 km or less were used. Earthquakes were located within 5 km
of the San Andreas Fault Zone along a 25-km segment centered on the nucleation region of the 1966 M
6 mainshock. Contours show the percentage of event comparison pairs with a given offset having a given
B. The gap in the range 0.6 < B < 0.9, 200 m < offset < 500 m generally separates highly similar
clustered from nonclustered behavior.

Nadeau et al., Science, 1994



Acceleration of repeating earthquak

STAATA for ORID 3209 at 9172016 12:01:23.933

es: Increasing magnitude with time

Diata for ORID 3209 at 3/17/2016 12:01:23.933
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Model for repeating
earthquakes

* Driven by afterslip?

* In some cases, magnitudes
increase in rapid succession

* Our goal is to thoroughly
catalog small earthquakes to

study nucleation mechanisms

* Tie to lab data and controlled field
experiments (e.g., SEISMS)

WILL THESE BE OF BROAD RELEVANCE?

Distance along the fault plane

(a) “Preslip” Model

(b) “Cascade” Model

j

Foreshocks do not
trigger each other,
but are a byproduct

of the nucleation
process

——— — i —

slow aseismic slip

rapid,
seismic slip

U

Foreshocks are
standard
earthquakes that
happen to trigger a

larger event

no aseismic slip
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Time ——
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Figure from Greg MclLaskey
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Pore fluid pressure effect on megathrust
strength
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Earthquake nucleation

* Numerous repeating earthquake sequences occur in Oklahoma,
including some showing an acceleration of moment release

* Foreshocks of the third Prague earthquake migrated onto the fault
plane through time

* Triggerability of faults by remote earthquakes suggests that over-
pressured faults may be detectable a priori

* Debate continues regarding the applicability of results from
Oklahoma nucleation to natural seismicity



An unexpected opportunity:
What can we learn?

* Structure

* Fluid processes in faults
 Fluids in shallow crust

* Nucleation processes

VS at DEPTH SLICE 4 KM
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P-arrival on stack of nodes S-arrivals on
T e individual nodes

Pushing
instrumentation:
Other uses of nodes?

Teleseismic earthquakes:
P-wave frequencies up to 2
(maybe 3) Hz;

S waves visible in 0.01-0.1 Hz
band

Fthd bttt barebetretd
P-arrival on Z components

Regional earthquakes:
Clear picks from M2.5 earthquakes
at > 150 km
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