Vertical Motions and the Earthquake Cycle in Southern California

Kaj M. Johnson Indiana University

in collaboration with

William C. Hammond, U. Nevada Reno

Reed J. Burgette, New Mexico State University

A Motivation: Earthquake Hazards

UCERF3, 2013

The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time-Independent Model

- Kinematic models
- Assume steady deformation
- Incorporate recoverable elastic strain accumulation
- Invert GPS horizontal velocity field for fault slip rates

A snapshot of time-varying processes

Deformation is Transient

• Recoverable elastic strain – fault coupling

- Time-dependent deep fault creep
- Time-dependent lower crust and mantle flow

Vertical Motions Associated with the Earthquake Cycle are Predicted

e.g., Konter-Smith et al., 2014

Questions Regarding Vertical Motions:

- Can we separate out tectonic signal from other sources?
 - Hydrologic loading
 - Sediment compaction
 - GIA
- Tectonic uplift across faults?
- Fingerprint of "ghost" transients due to mantle flow and past earthquakes?

Rapid Shortening and Uplift Active Fold and thrust Belt

Rapid Shortening and Uplift Active Fold and thrust Belt

- How is shortening accommodated across fault system? What are the slip rates?
- Is the broad warping across Transverse Ranges tectonic uplift? How much is permanent? Recoverable?

A. horizontal GPS-derived velocities (SCEC CMM)

San Joaquin Valley Groundwater Withdrawal

Deformation Model

- Elastic plate over inviscid substrate (gravitational restoring forces)
- Populate plate with 3D fault surfaces (SCEC CFM)
- Impose long-term fault slip rates (permanent deformation)
- Impose backslip in elastic halfspace above locking depth (recoverable elastic deformation)

Inverse Methods

- Bayesian Inversion (MCMC)
 - Solve for: fault slip rates locking depth data weights

Slip Rate Estimates

Predicted Deformation

1

-3

Predicted Deformation

Conclusion: Geodetic indeed record elastic recoverable and long-term tectonic uplift in Western Transverse Ranges!

Questions Regarding Vertical Motions:

- Can we separate out tectonic signal from other sources?
 - Hydrologic loading
 - Sediment compaction
 - GIA
- Tectonic uplift along faults?
- Fingerprint of "ghost" transients due to mantle flow and past earthquakes?

Long-lived Transients

Earthquake Cycle – SW Japan

Viscous Rheology of Lower Crust and Upper Mantle Western US

California

Central Nevada

Viscosity (Pa s)

➔ Significant temporal varations in surface deformation at earthquake cycle time scales

Viscoelastic Earthquake Cycle Model

(semi-analytical models)

Johnson and Fukuda (2010), Johnson (2013)

Viscoelastic Earthquake Cycle Model

Viscoelastic Earthquake Cycle

6 years after earthquake -300 2111111111111111 -300 15 ********************* ****** 10 -200 -200 11111111 -100 -100 5 15 15 11111111 15 100 100 -5 15 111 1111 200 200 -10 11111111111 111111111111111 1111111111111111111111 300 300 4111 -15 -300 -200 -100 100 200 300 -300 -200 -100 100 200 300 0 0

112 years after earthquake

faster than long-term rate

slower than long-term rate

Viscoelastic Earthquake Cycle Model Southern California

Johnson, 2013

Viscoelastic Earthquake Cycle Model Southern California

Johnson, 2013

Slip Rate Estimates

viscoelastic cycle model \rightarrow faster slip rates on several major strike-slip systems

What about the vertical rates?

(vertical data not used to constrain model)

observed vertical predicted vertical 200 200 mm/yr 150 150 3 100 100 2 50 50 0 0 0 -50 -50 -1 0 0 -100 -100 -2 -150 -150 -3 -200 -200 -100 0 100 200 300 400 100 200 300 400 500 0 -100 500

Predicted verticals are a total embarrassment! Block model is a poor representation of faults.

Modeling Vertical Deformation Field Requires A Better Fault Model

Fault-based Viscoelastic Earthquake Cycle Model Southern California

- Based on UCERF3 fault geometry
- Slip rate bounds and rake from UCERF3
- Model horizontal and vertical GPSderived velocity fields

data model

400

500

Viscoelastic Earthquake Cycle Model Southern California

observed vertical

predicted vertical (viscoelastic cycle)

Next Step...

Viscoelastic cycle model for Western US

Summary

- Lingering "ghost transients" associated with mantle flow and past earthquakes are subtle in horizontal motions
- Fault slip rate estimates sensitive to assumed role of mantle flow on surface deformation
- Small, spatially-coherent vertical motions are now resolvable with GPS
- Predictable ~200 km-long wavelength vertical motions associated with mantle flow and viscoelastic earthquake cycle
- Vertical GPS velocity field can help us tease out transient deformation contribution to present-day velocity field