Seasonal Loading Modulating Seismicity on California Faults

Christopher W Johnson

Yuning Fu (Bowling Green SU) Roland Bürgmann (UC Berkeley)

cGPS PBO Station P314 http://www.earthscope.org

California Deformation and Uplift

Major Features Delineated

- San Andreas Fault system
- Sierra Nevada Great Valley microplate
- Central Valley pumping
- Long-term post-seismic signal

Bill Hammond, UNR, pers. comm. MIDAS vel. solution

Seasonal Deformation Vertical GPS Time Series

Seasonal Deformation Vertical GPS Time Series

Seasonal Deformation Vertical GPS Time Series

Climatic Changes Observed in Loading

Lake Oroville, 19 August 2014 Drought Crisis

Lake Oroville, 11 February 2017 Dam Crisis ~200k people evacuated

24 Hour Positions Using Final Orbits (blue) and Rapid Orbits (magenta). Processed by the Nevada Geodetic Laboratory. Plotted on 2017-Mar-20. Last data on 2017-Mar-04.

http://geodesy.unr.edu

Seasonal Loading

What do we want to learn?

Is Seasonal Hydrological Loading Modulating Seismicity?

Are faults responding to stress perturbations with annual periods?

Is the crust critically stressed?

What is the failure mechanism for earthquake nucleation?

Coulomb Failure and Mohr Circles

Coulomb Failure and Mohr Circles

Seasonal Loading Modulating Seismicity on California Faults

- i. Motivation Annual Loading Cycles
 - i. Nepal and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

Water/Snow Loading Examples

- Gravity inferred seasonal water change in the Ganges Basin
- ~4kPa stress change
- Stacked seismicity

Bettinelli et al., 2008

5/18/17 Christopher Johnson

Water/Snow Loading Examples

- Estimated Water Thickness
- Seasonal Deformation in California

 ~1.5 kPa Stress Estimate
- Stacked seismicity along SAF

Periodicity in Seismicity Records Evidence for Stress Modulation

Dutilleul, Johnson, Bürgmann, et al., JGR, 2015

Annual Periodicity

Period (month) Dutilleul, Johnson, Bürgmann, et al., JGR, 2015

Seasonal loading modulating seismicity on California faults

- i. Motivation Annual Loading Cycles
 - i. Nepal and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

Elastic Load Model

- Effective Water Storage estimated from vertical GPS displacement
- GPS Stations in the Central Valley omitted
- Invert displacement for mass on surface and estimate water storage

Water Storage

5/18/17 Christopher Johnson

Johnson, Fu, Bürgmann, in review

GRACE / GLDAS Comparison Gravity Measurements to Infer Water Storage Composite models

Seasonal loading modulating seismicity on California faults

- i. Motivation Annual Loading Cycles
 - i. Nepal and California
- ii. Seasonal Loading and Deformation
 - i. Modeling Efforts
 - ii. Stress calculations
- iii. Stress and Seismicity Analysis
 - i. Is Seasonal Hydrological Loading Modulating Seismicity?
 - ii. Are Other Loading Sources Contributing?

Deformation Modeling

- Assume Linear Elastic
- Calculate Stress at 8 km Depth $\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$
- Rotate to Failure Plane
- Shear ($\sigma_{\rm S}$) and Normal ($\sigma_{\rm N}$)
- Δ **Coulomb** = $\Delta \sigma_{S}$ + $\mu \Delta \sigma_{N}$

X'a

NCSS Focal Mechanisms

1000

0

2014

ETAS Declustering 2006-2014 Exclude geothermal & volcanic Mc ~ 2.0 (w/ 0.25 yr window) ETAS 2D (Zhuang et al., 2002)

2008

2010

2012

2

2006

Is Seasonal Hydrological Loading Modulating Seismicity?

Look at the stress change on the focal plane

5/18/17 Christopher Johnson

Johnson, Fu, Bürgmann, in review

Percent excess M≥2.0 seismicity

Excess Seismicity N_{ex} Plot

 $N_{ex} = (N_{Act} - N_{Exp}) / N_{Exp} * 100$

N_{Act} = stress at event time

 N_{Exp} = Uniform distribution of 250 random events times for stress cycle

Percent excess M≥2.0 seismicity

Excess Seismicity N_{ex} Plot

 $N_{ex} = (N_{Act} - N_{Exp}) / N_{Exp} * 100$

N_{Act} = stress at event time

N_{Exp} = Uniform distribution of 250 random events times for stress cycle

For all times with ~-1 kPa shear stress decrease ~16% less events

-1.9 kPa is minimum shear stress in the population

Percent excess M≥2.0 seismicity Stress Amplitude

Percent excess M≥2.0 seismicity Stressing Rate

Failure Mechanism

- Critically Stressed
- Increase σ_1 or Decrease in σ_3
 - Oblique / Dip-slip Optimally Oriented
- Low strength, weak fault
 - Strike slip small shear stress change
 - Shallow SAF μ=0.15 (Lockner et al., 2011)

Lab and Model Comparison

Short period loading Stress Amplitude

5/18/17 Christopher Johnson

Beeler and Lockner, 2003

Lab and Model Comparison

5/18/17 Christopher Johnson

Ben-Zion, 2012

Is Seasonal Hydrological Loading Modulating Seismicity?

Are faults responding to stress perturbations with annual periods? Hydrological loading is a large contributing factor in the modulation of earthquakes from the annual stress cycles

Is the crust critically stressed? Excess seismicity from a 1-5 kPa

What is the failure mechanism for earthquake nucleation? Positive correlation with peak stress amplitude suggests an instantaneous threshold failure stress. Positive correlation with peak stressing rate suggests agrees with lab and model results

Alaska Seismicity

Nearest Neighbor Clusters 10^{4} 27 $\log_{10}T + \log_{10}R = -4.3$ 10^{3} 24 10² 21 Rescaled Distance (R) 10 18 10 15 10 12 10 9 10⁻³ 6 10-4 3 10-5 10-8 10-7 10-6 10⁻⁵ 10-4 10⁻³ 10⁻² 10⁻¹ 10^{0} Rescaled Time (T) 2.5 2.0 Event/day 1.5 Need to 1.0 improve declustering 0.5 0.0 1995 2000 2005 2010 2015

Alaska Seismicity

Alaska Loading

Deformation at 10 km Vertical Load

Thank You

PBO Station P314 http://www.earthscope.org