

The CCArray: Towards an EarthScope-like program for Canada

"Geoscience without Borders"

James, T. (GSC/Uvic), Boggs, K. (MRU), Eaton, D. (UofC), Hyndman, R. (GSC/UVic), Audet, P. (UofO), Schmidt, M. (UofC), Aster, R. (CSU), Schutt, D. (CSU), Rowe, C. (McGill), Morell, K. (UVic), Leonard, L. (UVic), and many others

Passion & Excitement

Dream It. Believe It. Achieve It.

CCArray

Complete the

"structure & evolution of the North American continent"

Case One: Oct. 2012 Eq = Large tsunami not directly witnessed by a person.

earth

Detected by a tide gauge in Hawaii.

Incipient subduction

Haida Gwaii Margin -partition of oblique convergence into strike slip -thrust Earthquake (Hyndman et al 2014)

Outline

Part 1: Katherine – Overview -"EarthsCAN" – CCArray – CC-NET -Scientific goals; structure

Part 2: Tom – GNSS Workshop -Scientific goals continued

Takeaways

- 1. Introduce CCArray
- 2. Advice, lessons learned or suggestions are appreciated!
- 3. We look forward to collaborations; please talk to us

"EarthsCAN" – pan-Canada "Magnetosphere through crust to core"

"EarthsCAN" – Motivation:

Maintain North American Large Geoscience Research Program Momentum

Instruments now in Alaska and nw Canada

Instruments could be removed as early as 2019

CCArray separated from EarthsCAN

Map courtesy S. Azevedo and R. Busby.

Subduction Zone Observatory

(From IRIS Workshop June 2016; EarthsCAN brainstorming workshops Calgary/Ottawa Aug. 2016; SZO Workshop Sept. 2016) Canadian Cordillera Array (CCArray)

Some CCArray Scientific Targets

"Mini Himalayas" Yakutat Block

(Mazzotti et al 2008)

Orogenic Float Model

Missing Active Faults??

First White Paper – Cascadia Forearc active fault

(Amos (WWU), Harrington (McGill), Kirkpatrick (McGill), Leonard (UVic), Levson (UVic), Liu (McGill), Morrell (UVic), Regalla (Boston U), Rowe (McGill); Morrell et al GSA Today 2016)

Red – active crustal faults

No previous active faults proven in Canada

Recent lidar, field work, & paleoseismic trenching → large (M6-7) late Quaternary Eq on Leech River Fault

Proposed:

Expand lidar, seismic, GPS

- \rightarrow fieldwork, trenching
- → ID other active crustal faults in western (and NW) Canada

Consider the TA as a massive collection of arrays

Use Delauney triangulation to define 580 triads

Modelling atmospheric gravity waves (see de Groot-Hedlin & Hedlin posters)

de Groot-Hedlin, Hedlin and Walker, 2013

May-August: 2010-2014

Weather stations On CCArray = Improved Numerical Weather Modelling East of Cordillera

Calgary Pre-Flood/Post-Flood Comparison

Before flood: Google Earth Image September 2008 After flood: NASA/ISERV Image June 22, 2013

This image was taken by ISERV-- a new NASA-developed testbed camera onboard the International Space Station.

CC-Net (Pilot for CCArray)

CC-NET (pilot phase):

NSERC – LOI Submitted

- Create a new national research network, with Canadian and international partners
- Establish a set of pilot sites
- Commence collaborative research within 4 themes that are linked to the NSERC strategic target areas
- Create a scalable management structure

Represents a start to build upon for future larger funding

Develop protocols needed for stations to support multiple sensors

Summer 2017 – Calvert Island

1st Type I site – Calvert Island
-Hakai Institute
-seed funds from UofC
1st Type II site (?) – Valemount
-linked to geothermal E
Other Type II sites – AINA Klua
Sponsorship – Borealis Geopore

Other Type II sites – AINA Kluane Lake, NE BC Sponsorship – Borealis Geopower, Geoscience BC, BC Hydro

CCArray Proposed Organizational Structure

Recent Progress -1st townhall April 2017 -website launched last Friday -strategic plan in progress

CCArray Virtual Townhall Meeting

by reism 🛗 May 5, 2017 🕐 10:04 am 🌘 Leave a comment 📕 Uncategorized

On April 26, 2017 the CCArray scientific community held a virtual townhall meeting to review the current status of the project. Notes from the meeting are available here: CCArray_Townhall_April2017

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Global Navigation Satellite System (GNSS) workshop for Canadian Cordillera Array (CCArray)

March 20 & 21, 2017 Pacific Geoscience Centre

Natural Resources Ress Canada Cana

Ressources naturelles Canada

Goal of workshop

 Define high-level scientific targets and geographical regions for a densified GNSS network in western Canada as part of the Canadian Cordillera Array (CCArray) initiative, capitalizing on anticipated domestic and international opportunities for instrumentation, operations, and funding.

• About 40 participants

Ressources naturelles

Canada

atural Resources

Canada

- One day of talks, 1/2 day of discussion and breakout groups
- Main output is map of proposed densified GNSS network, accompanying science rationale.

Outline

- (Some) science goals
- Present GNSS network
- Workshop outcomes
 - suggested network densification
 - additional science community engagement
 - Programmatic considerations, looking forward

Plate Interactions, Tectonics, and Earthquakes Crustal Motion Measured by GNSS

Postglacial Rebound – aka Glacial Isostatic Adjustment

Cordilleran Ice Sheet

Clague and James, 2002

Peltier et al., 2015

Alaska, response to Neoglacial fluctuations

BC and Alaska, elastic response to present-day ice mass change

Models require ice load history and assumed Earth structure and rheology

Larsen et al., 2005

Sea-level projection for high-emissions scenario at 2100

Vertical crustal motion exerts a dominant control on relative sealevel projections

Shows all sites for which projections are provided.

James et al., 2014; 2015 Lemmen et al., 2016 "Canada's Marine Coasts in A Changing Climate"

Victoria (Albert Head)

Western Canada interior - seismicity

2001-2008 (*N* = 97)

Source: induced seismicity.ca/catalogues/ $M_L \ge 2.5$ (probable quarry blasts removed)

2009-2016 (*N* = 429) Inferred link to hydraulic fracturing

- 1. Horn River basin (BC Oil and Gas Commission, 2012)
- 2. Montney (BC Oil and Gas Commission, 2013)
- 3. Duvernay (Schultz et al., GRL, 2015)
- 4. Alberta Bakken (Schultz et al., BSSA, 2014)

Slide courtesy D. Eaton, U. Calgary

ources Ressources naturelles Canada

Unlocking the Energy Elephant, March 3, 2017

Other Potential Topics

- Ionospheric, tropospheric studies
- Hydrological loading
- Snow, water levels, vegetation, soil moisture monitoring (PBO H20 web site)

Outline

- (Some) science goals
- Present GNSS network
- Workshop outcomes
 - suggested network densification
 - additional science community engagement
 - Programmatic considerations, looking forward

Western Canada and Adjacent US continuous GNSS Stations

Canada Continuous Alaska Continuous Continental US

Continuous

Earthquake Early Warning Augmentation of Network

Ocean Networks Canada –

Province of BC (EMBC) –

Natural Resources Canada

- Network: Installation by March 31, 2019
- Development of Earthquake Early Warning system targeting Cascadia Subduction Zone events;
- Installation of strong-motion and GNSS instruments, offshore component focussing on seismic instrumentation;

Outline

- (Some) science goals
- Present GNSS network
- Workshop outcomes
 - suggested network densification
 - additional science community engagement
 - Programmatic considerations, looking forward

GNSS Network for CCArray

- Canada Continuous
- CBN
- US Continuous

Key Elements

- Substantial interest (at workshop) in active tectonics and earthquake hazard
- Fill in gaps in interior for distributed strain
- Sites to detect presentday (and past) mountain glacier change
- Regional strain field to better understand induced seismicity
- Opportunities offered by technological developments – e.g., acoustic (sub-sea) GPS
- About 100 new sites + circles

570

760

950

380

Key elements (continued)

- GNSS distribution is 'pure' generated solely based on the • requirements to answer questions (mainly kinematic), but how does it relate to provisional seismic instrument distribution?
 - Co-locate sites, where feasible, price out costs •
- With regard to GNSS, need to more fully engage with various communities:
 - Meteorology numerical weather modelling •
 - Glaciology •

Canada

- Volcanology
 - Mt. Meager, Garibaldi volcanic belt, Anahim VB
- Induced seismicity •
 - Regional/local targets (and INSAR/repeat LIDAR)

Key Elements (continued)

- Need to consider supporting geoscience to answer questions, e.g.,
 - INSAR/LiDAR for local/regional ground deformation;
 - surface exposure dating for glaciological history for GIA modeling;
 - glacier monitoring;

Programmatic

- Devote substantial resources to outreach and education (15-30%?)
- Be aware of data management (esp. meta-data) requirements
- Workshop report is pending

Next Steps for CCArray

- Monthly teleconferences; regular updates
- June 2017 GSA Rocky Mtn Section Mtg in Calgary at MRU
- August First Annual CCArray Meeting Compose complete submission for NSERC – SPGN grant
- August install instruments on Calvert Island
- Fall 2017 write CFI proposal for instrumentation to co-install with seismometers
- December AGU session
- Spring 2018 start installing CC-NET instruments

Takeaways

- 1. Introduce CCArray
- 2. Advice, lessons learned or suggestions are appreciated!
- 3. We look forward to collaborations; please talk to us

Thank you!

Questions?