

Radially Anisotropic Models of Shear Wave Velocity Beneath the Wyoming Craton and Other Places from the USArray Data

Aibing Li

Riddhi Dave, Yao Yao, Karissa Pepin University of Houston

North American Craton

Wyoming Craton

Average Phase Velocities

Three sub-regions:

Yellowstone hotspot **Rocky Mountains Great Plains**

(b)

4.3

4.1

3.9

Rayleigh

YΗ

1-D V_{SV} and V_{SH}

3-D Vsv model

3-D Vsv model

3-D Vsh model

Voigt average Vs

Radial anisotropy

Radial anisotropy

(Dave and Li, in prep)

Evolution of the Wyoming Craton

Weakening by hydration

Erosion by mantle upwelling

Modification by small-scale convection

Erosion by plume re-enforced convection

Plume-Craton Interaction

(Weeraratne et al., 2003)

Shear wave splitting measurements

Radial anisotropy

(Liu et al., 2014)

Summary for the Wyoming craton

- The Wyoming cratonic lithosphere was weakened by hydration from the Farallon slab, and partially eroded by mantle upwelling and small-scale convection.
- Hot plume materials project into the craton through weak channels at the base of the lithosphere, and upwelling is likely developing at the eastern boundary of the craton.
- Radial anisotropy provides additional constraints for the crustal and mantle structure.

NW Gulf of Mexico Coast

3-D shear wave velocity and radial anisotropy models under Texas

Radial anisotropy

High velocity beneath the Ouachita belt

Large +anisotropy (Vsh>Vsv) in the coastal plain

Alternative high and low velocity anomalies in the asthenosphere

Complex relation between velocity and anisotropy

(Yao and Li, GRL,2016) (Yao and Ll, in prep)

Rayleigh and Love wave phase velocities in Alaska

(Pepin and Li, in prep)

The Legacy of EarthScope

. . .

Develop anisotropic velocity models

Get into the details

THANK YOU

QUESTIONS?