

Earthscope Illumination of Melts, Volatiles, Dynamics and Structure of a Continent

Tony Lowry

with thanks to: Thorsten Becker, Michael Berry, Janine Buehler, Fan-Chi Lin, Xiaofei Ma, Marta Pérez-Gussinyé, Brandon Schmandt, & Derek Schutt

UtahStateUniversity

	Hot? Wet?	Higher H ₂ O	Property	Higher Temp.	Cold? Dry?
	Slow	$\mathbf{\Psi}$	Seismic Velocity	V	Fast
	High	1	Electrical Conductivity	1	Low
	These are	$\mathbf{\Phi}$	Mass Density	V	
	important for the dynamics	$\mathbf{\Psi}$	Flow Strength	V	
		1	Partial Melt	1	

Shear wave velocity...

Lin et al., Geophys. J. Int. (2014)

Mantle melts from v_P/v_S...

Schmandt & Humphreys, Earth Planet. Sci. Lett. (2010)

Lower crustal melts from MT...

Log₁₀[Resis.(Ω.m)]

2

Greene, PhD Diss. University of Miami (2014)

Mantle hydration state from MT...

Meqbel et al., Earth Planet. Sci. Lett. (2014)

Rheology? from attenuation...

Bao et al., Geophys. J. Int. (2016)

Rheology? from seismic LAB...

Levander & Miller Geochem. Geophys. Geosys. (2012)

So, to state the obvious...

Separating temperature, compositional, melt and volatile flux in deformation processes will require:

- Integration of multiple data sets
- With mineral physics
- And careful assessment of uncertainties

Lowry & Pérez-Gussinyé, Nature 2011

T_e and Strength

Flow Strength...

depends mostly on:

45°

40[°]

35°

30°

25° 25

30

Crustal Thickness (km)

35

40

-125° -120° -115° -110° -105° -100° -95°

45

50

-90°

-85°

-80°

-75°-70°

- Mineralogy (crust thickness)
- Temperature
- Hydration

Flow Strength...

depends mostly on:

- Temperature
- Hydration

Flow Strength...

Differential Stress (MPa) -400 -300 -200 -100 100 200 300 n Quartz **Feldspar** 20 40 **Depth** (km) 60 80 100

depends mostly on:

- Mineralogy (Qtz or Fsp?)
- Temperature
- Hydration

120

depends mostly on:

- Mineralogy
- Temperature
- Hydration

Pn (refracted Moho phase) tomography

Buehler & Shearer, J. Geophys. Res. (2017)

Moho temperature (from Pn & mineral physics)

Schutt et al., *Geology* (revised, 2017)

25° 500 600 700 800 900 1000

-125° -120° -115° -110° -105° -100° -95°

-80°-75°

-70°

-90° -85°

Wet (saturated) end-member

Dry end-member

Thermodynamical modeling of *P-T*-H₂O dependent **mineralogy...**

Moho Temperature

Modeled (Qs) Measured (Pn) **Obs Minus Mod** 35 35 30 -120 -115-125 -110 -100400 450 500 550 600 650 700 750 800 850 900 950 1000 500 600 700 800 900 Predicted Moho Temperature (C) 1000 400 -200 -150 -100 -50 -250 Ó 50 100 15 Observed Moho Temp (C) Residual Temp (Obs-Pred) (C)

Berry et al. AGU Fall Mtg 2015

"Cold Moho" anomaly

= high elevation? R = -0.71...

Berry et al. AGU Fall Mtg 2015

Surface heat flow

Measured Modeled from Pn Measured minus (borehole temps) Moho temperature modeled

- Hydration of the upper mantle dominates rheological strength
- Hydration of the crust is recorded in bulk v_P/v_S
- Differences in geotherms predicted from heat flow and Moho temperature suggest volatile flux dynamics
- Hydration may contribute to buoyancy of the lithosphere

