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e Type example of a large-
scale, gentle restraining
bend system

e Tectonic evolution of
the highest point in
North America

.60 Southern Alaska: *

- In the Alaska Range,
modern high elevations
correspond with zones of
youngest exhumation

- Anomalous, ~isolated
topography/exhumation



The geometric complexity
formerly known as the ‘Mount
McKmIey restrammg bend’

~70 km between
bends
Through-going
strike-slip fault

Highly

asymmetric
topography




The geometric complexity
formerly known as the ‘Mount

~18° bend

~70 km between
bends

Through-going
strike-slip fault

Highly
asymmetric

topography

Tranpressional uplift:
Uplift along otherwise straight
strike-slip fault due to obliquity
of plate motion

Sharp restraining bend:
Rhomboidal zone of

topography and uplift, often
roughly symmetric. May or
may not have through-going
stepover fault (dashed line)

Gentle restraining bend:
Elongate zone of topography

and uplift, typically asymmetric
across primary strike-slip fault




Deformation in gentle restraining bends

How is crustal deformation Fixed

accommodated in the sustained uplift deformation propagates
restraining bend? adjacent to stepover away from stepover

abandoned off-fault
f contraction

How is extreme topography
created - and maintained - in a
restraining bend?

stepover abandons
previously deformed
deposits

What controls the production of
asymmetric topography/faulting
in gentle restraining bends?




Alaska Range suture zone (Ridgway et al., 2002; Fitzgerald et al.,
2014)

25-30 Ma initiation of Alaska Range deformation (Lease et al,,
2016)

Rotation/indentation of Southern Alaska Block (Haeussler,
2008; Bemis et al., 2015)

Highlv slin-partitioned svstem (Bemis et al.. 2015)
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Alaska Range suture zone (Ridgway et al., 2002; Fitzgerald et al.,
2014)

25-30 Ma initiation of Alaska Range deformation (Lease et al,,
2016)

Rotation/indentation of Southern Alaska Block (Haeussler,
2008; Bemis et al., 2015)

Highly slip-partitioned system (Bemis et al., 2015)



Geology and upper crustal seismicity
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Kantishna Cluster seismicity :
Alaska Range suture zone, intruded

by Cenozoic plutons




Part 1: Active faults and relation
to DF bends




Temporal changes in fault
JHEV o]

Evidence for temporal
changes in fault behavior
— possible reverse fault
reactivates as a normal
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Changes in active faults across
the bend
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Along-strike change in
fault type — normal to the
east, thrust nearer the
bend apex.
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Changes in active faults across

Denali
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Slip rate at Carlson
Creek
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e Sequential uplift of
thrust fault HW

e Preliminary IRSL
ages
— Upper two surfaces
~10 ka and 6 ka

e Dip uncertain, 45°-
60°7?

~ Thrust fa(l‘ﬁV




Slip rate at Carlson
Creek
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1-2 mm/yr

Prgfile Distance (m)

e Sequential uplift of
thrust fault HW

e Preliminary IRSL
ages
— Upper two surfaces
~10 ka and 6 ka

e Dip uncertain, 45°-
60°7?
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Deformation adjacent to the
restraining segment
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Deformation adjacent to the
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Profile distance (m)
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Along-strike change in Quaternary
deformation across the western end

?

of the MMRB
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ong Chedotlothna

Chedotlothna TR T

fault
)75 W e
/ £ 7 J'};gi;

m =-0.0379

m =-0.0333

10Be surface exposure
ages of ~16 ka at sites
A and B
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Where does the Chedotlothna

e Active faulting
north of the
Denali fault ends
to west

7 A ¢ Corresponds

#  with where the
Denali fault
leaves the
restraining bend
(just south of this
map)
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Generalized structural

observations

22



Part 2: Low-T thermochronology
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New low-T thermochronology
data

e Fault-parallel transects through

restraining-ben
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New low-T thermochronology
data
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Evolution of a gentle restraining
bend

Northside AFT cooling ages .

Southside
ZHe cooling ages
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e Basic geologic Easting
constraints
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Evolution of a gentle restraining
bend

Northside AFT cooling ages .

Southside
ZHe cooling ages
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Easting
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Evolution of a gentle restraining
bend

Northside AFT cooling ages .
< N
IIIIIIIIIIIIIIII""lllH!iiIIIHEHIIIIIIIIIIII”
Southside
ZHe cooling ages

0
530000 550000 570000 590000 610000 630000 650000

Easting

(w) uoneas|y

28



Evolution of a gentle restraining
bend
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e Still going up, but riding
the tectonic wave



Evolution of a gentle restraining
bend
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Evolution of a gentle restraining
bend
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oraker = paleo-

Denali

e Still going up, but riding

the tectonic wave

Thrust
fault
shorteni

DF maintains
primary fault
trace

DF trace
migrates in HW
of NW-vergent
thrust faults

Material
remains within

bend for
millions of years

Denali
fault slip

Migration rkd&e

Advection
rate

Fixed

sustained uplift
adjacent to stepover

deformation propagates
away from stepover

abandoned off-fault

{ contraction

stepover abandons
previously deformed
deposits
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Part 3: Supporting
Data

Scaled physical
experiments
simulating
deformationin a
MMRB-like
restraining bend
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Scaled physical
experiments
simulating
deformationin a
MMRB-like
restraining bend

Characteristically produces
asymmetric topography
(Hatem et al. (2015)

Surface trace of primary
fault migrates laterally

Points advect through the
bend
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Speculative geomorphic fault offsets - glacial
valleys
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Implications/Conclusions
MMRB sustained a single primary fault trace
through ~6 m.y. of restraining bend evolution

Long-lived, long-length stepover fault keeps crust
within material within restraining bend for
millions of years

Crustal strength heterogeneity is not required to
produce observed asymmetric topography

Relief/elevation of Denali produced by persistent,
localized contraction

— Possibly enhanced by riding up HW of NW-vergent
thrust faults

— Likely also enhanced through climatic/erosional effects
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Implications/Conclusions

l o
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Active faults
associated with
Kantishna Cluster
seismicity

‘Process zone’
ahead of rolling-
hinge-like
migration of the
bend in the Denali
fault?
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Questions?
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north side held fixed
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Of, = 7-9 mm/,,
Tf= 115 mm/,,

a=Tf/tan 18"

b=Df, Df,=Tf /sin 18’

Df,=Df,+Df,  b=Df,-Tf/sin18’
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Quaternary mapping

/
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Geologic Units

- active glacier

4

- active channel

- landslide

- late Holocene floodplain

- alluvial fan

- older, abandoned floodplain

- colluvium

- moraine, undifferentiated

- most recent glacial advance |

- latest Pleistocene moraines |

- glaciofluvial deposits

late Pleistocene moraines

- late Pleistocene moraines

- garly-mid Plgist. moraines

- Tonzona pluten

- undifferentiated bedrock

White faults —
inactive faults in

bedrock (Reed and
Nelson, 1980)

Black faults — active



