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Motivation

• Type	example	of	a	large-
scale,	gentle	restraining	
bend	system

• Tectonic	evolution	of	
the	highest	point	in	
North	America

– In	the	Alaska	Range,	
modern	high	elevations	
correspond	with	zones	of	
youngest	exhumation

– Anomalous,	~isolated	
topography/exhumation 2
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The geometric complexity 
formerly known as the ‘Mount 

McKinley restraining bend’

• ~18° bend
• ~70 km between 

bends
• Through-going 

strike-slip fault
• Highly 

asymmetric 
topography

~8 
mm/yr

~5 
mm/yr
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Deformation in gentle restraining bends

• How	is	crustal	deformation	
accommodated	in	the	
restraining	bend?	

• How	is	extreme	topography	
created	– and	maintained – in	a	
restraining	bend?

• What	controls	the	production	of	
asymmetric	topography/faulting	
in	gentle	restraining	bends?
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Burkett et al. (2016), modified fom Wakabayashi (2007)
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• Flat-slab	subduction	beneath	southern	Alaska

• Alaska	Range	suture	zone	(Ridgway	et	al.,	2002;	Fitzgerald	et	al.,	
2014)

• 25-30	Ma	initiation	of		Alaska	Range	deformation	(Lease	et	al.,	
2016)

• Rotation/indentation	of	Southern	Alaska	Block	(Haeussler,	
2008;	Bemis	et	al.,	2015)

• Highly	slip-partitioned	system	(Bemis	et	al.,	2015)
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Geology and upper crustal seismicity
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Kantishna Cluster seismicity
Alaska Range suture zone, intruded

by Cenozoic plutons
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Part 1: Active faults and relation 
to DF bends

Quaternary 
geologic 
mapping
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Temporal changes in fault 
behavior

Plio-Quaternary alluvial gravels

Bedrock

Evidence for temporal 
changes in fault behavior 
– possible reverse fault 
reactivates as a normal 
fault
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Changes in active faults across 
the bend

Along-strike change in 
fault type – normal to the 
east, thrust nearer the 
bend apex.

D
U

Plio-
Quat. 
Gravel

s

looking southwest

looking east
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Changes in active faults across 
the bend

Along-strike change in 
fault type – normal to the 

east, thrust nearer the 
bend apex.



13

Changes in active faults across 
the bend

Along-strike change in 
fault type – normal to the 
east, thrust nearer the 
bend apex.

Thrust fault

Normal fault

Denali
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Slip rate at Carlson 
Creek

Along-strike change in 
fault type – normal to the 
east, thrust nearer the 
bend apex.

Thrust fault

• Sequential	uplift	of	
thrust	fault	HW

• Preliminary	IRSL	
ages	
– Upper	two	surfaces	
~10	ka and	6	ka

• Dip	uncertain,	45°-
60°?
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Slip rate at Carlson 
Creek

1-2 mm/yr

Along-strike change in 
fault type – normal to the 
east, thrust nearer the 
bend apex.

Thrust fault

• Sequential	uplift	of	
thrust	fault	HW

• Preliminary	IRSL	
ages	
– Upper	two	surfaces	
~10	ka and	6	ka

• Dip	uncertain,	45°-
60°?

1.1 m
7.1 m

9.5 m
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Deformation adjacent to the 
restraining segment
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Deformation adjacent to the 
restraining segment

Denali



• McLeod	Creek	
- slip	rate	
constraints

• 1-2	mm/yr
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Along-strike change in Quaternary 
deformation across the western end 

of the MMRB?
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Chedotlothna
fault

View to SW along Chedotlothna
fault scarp

~19 m 

A

B

10Be surface exposure 
ages of ~16 ka at sites 

A and B 
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Where does the Chedotlothna
fault go?

Fault scarp

No active fault surface trace

• Active faulting 
north of the 
Denali fault ends 
to west

• Corresponds 
with where the 
Denali fault 
leaves the 
restraining bend 
(just south of this 
map)
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Generalized structural 
observations

SE-dipping

thrust 

faults

Steep, S-

dipping 

normal 

faults

No active 

faults 



Part 2: Low-T thermochronology

23
Fitzgerald et al. (1995)
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New low-T thermochronology
data

• Fault-parallel	transects	through	
restraining	bend
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New low-T thermochronology
data

• Fault-parallel	transects	through	
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Evolution of a gentle restraining 
bend

• Basic	geologic	
constraints

Steep 

normal 

faults

No active 

faults 

DF-

parallel 

thrust 

faults

~8 mm/yr

~5 mm/yr

~1-2 mm/yr

~1.5 mm/yr
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Evolution of a gentle restraining 
bend

Steep 

normal 

faults

No active 

faults 

DF-

parallel 

thrust 

faults

Cooling 

ages 

older

Cooling 

ages 

younger
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Evolution of a gentle restraining 
bend

Cooling 

ages 

younger

Cooling 

ages 

older

Denali

Fo
rake

r

ForakerDeepest 
crustal 

exposure
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Evolution of a gentle restraining 
bend

Foraker	=	paleo-
Denali
• Still	going	up,	but	riding	
the	tectonic	wave	

Denali

Fo
rake

r
Denali

Foraker

Steep 

normal 

faults

No active 

faults 

DF-

parallel 

thrust 

faults
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Evolution of a gentle restraining 
bend

Foraker	=	paleo-
Denali
• Still	going	up,	but	riding	
the	tectonic	wave	

Denali
Foraker

Steep 

normal 

faults

No active 

faults 

DF-

parallel 

thrust 

faults

Denali 
fault slip 

rateThrust 
fault 

shorteni
ng rate 

Advection
rate

Migration rate

• DF	maintains	
primary	fault	
trace

• DF	trace	
migrates	in	HW	
of	NW-vergent
thrust	faults

• Material	
remains	within	
bend	for	
millions	of	years



Part 3: Supporting 
Data

Scaled physical 
experiments 
simulating 

deformation in a 
MMRB-like 

restraining bend
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Uplift map

horizontal movement of crust



Scaled physical 
experiments 
simulating 

deformation in a 
MMRB-like 

restraining bend
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Uplift map

horizontal movement of crust

Advects out of 
bend

• Characteristically	produces	
asymmetric	topography	
(Hatem	et	al.	(2015)

• Surface	trace	of	primary	
fault	migrates	laterally

• Points	advect through	the	
bend
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Speculative geomorphic fault offsets - glacial 
valleys



Seismicity of the Denali area
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Steep 

normal 

faults

No active 

faults 

DF-

parallel 

thrust 

faults

~8 mm/yr

~5 mm/yr

~1-2 mm/yr

~1.5 mm/yr EQ
s!

No 
EQs!



Implications/Conclusions
• MMRB	sustained	a	single	primary	fault	trace	
through	~6	m.y.	of	restraining	bend	evolution	

• Long-lived,	long-length	stepover fault	keeps	crust	
within	material	within	restraining	bend	for	
millions	of	years

• Crustal	strength	heterogeneity	is	not	required	to	
produce	observed	asymmetric	topography

• Relief/elevation	of	Denali	produced	by	persistent,	
localized	contraction

– Possibly	enhanced	by	riding	up	HW	of	NW-vergent
thrust	faults

– Likely	also	enhanced	through	climatic/erosional	effects 36



Implications/Conclusions
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• Active	faults	
associated	with	
Kantishna	Cluster	
seismicity

• ‘Process	zone’	
ahead	of	rolling-
hinge-like	
migration	of	the	
bend	in	the	Denali	
fault?



Questions?
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Shortening north of the Denali 
fault View to the SE

View looking NW

aggradational surface

aggradational surface

basin



Quaternary mapping

• White faults –
inactive faults in 
bedrock (Reed and 
Nelson, 1980)

• Black faults – active
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