Seismic evidence for a fossil slab origin of the Isabella Anomaly in Central California

Chengxin Jiang, Brandon Schmandt, Steven M. Hansen (*UNM*) Sara L. Dougherty (*USGS*) Robert W. Clayton (*Caltech*) Fan-Chi Lin, Jamie Farrell (U. Utah)

EarthScope National

Outline

- Tectonic origins of Isabella Anomaly: fossil slab or foundering lithospheric root
- Central California Seismic Experiment
- Seismic imaging efforts:
 - Surface wave tomography
 - Scattered wave imaging
 - Body wave & surface wave joint inversion

Isabella Anomaly

(2013)

Isabella Anomaly in a plate-

After Wang et al. (2013), Porritt et

Origin hypotheses

(B) Foundering Lithospheric Root

Wang et al. (2013)

Origin hypotheses

(A) Fossil Slab

(B) Foundering Lithospheric Root

Wang et al. (2013)

Zandt et al. (2004)

Origin hypotheses

(A) Fossil Slab

(B) Foundering Lithospheric Root

Wang et al. (2013)

Zandt et al. (2004)

Central California Seismic

Dec. 2013 – Oct. 2015 Broadband •

0

seismic stations avoid the Isabella Anomaly

Central California Seismic

- 49
 broadband
- 3 stations at foothills
- ~20
 stations

 right above
 IA
- ~7 km spacing

Data sets for surface wave

413 broadband

Surface wave signals from:

 Ambient noise interferometry., 2008, (7-25 s)²⁰⁰⁹

Phase velocity maps

MC inversion for 1D Vs profile

Prior

- 1. information 1. Vs free to Vary in
 - crust
- 2. Positive Vs gradient in the uppermost mantle

MC inversion for 1D Vs profile

Prior

- 1. information 1. Vs free to Vary in
- crust
- 2. Positive Vs gradient in the uppermost mantle

MC inversion for 1D Vs profile

Ophiolitic materials beneath

20km, 3.68km/s

 High velocity in the mid crust of the Great Valley

Active source seismic

Godfrey & Klemperer, (1998)

Uppermost mantle velocity

Isabella Anomaly

- circular-shape
- > 4.45 km/s
- diminish at 160 km depth

Low velocity from Moho to ~80 km

- Correlated with < 1Ma volcanos
- 4.1-4.2 km/s suggests existence of melts Rau & Forsyth (2011)

Vertical cross sections

Distinct lithospheric structures beneath Great Valley

In the North:

- Low velocity
- Horizontal

In the South:

- High velocity (>4.45 km/s)
- East dipping
- >100 km away from east

CCP Stacking of PpPp phases

Sara Dougherty (USGS)

CCP Stacking of PpPp phases

Sara Dougherty (USGS)

Sierra Paradox Experiment in 1997 ~6-month seismic recordings

Frassetto et al., 2011

Frassetto et al., 2011

Foothills

- Crustal thickness of ~40 km
- ~4.2 km/s in the uppermost mantle

Eastern Sierra Nevada

- Concentrated low velocities ~3.3 km/s
- Highest topography
- Velocity reversal in the crust helps fit the dispersion
- Compacted delamination

Foothills

- Crustal thickness of ~40 km
- ~4.2 km/s in the uppermost mantle

Eastern Sierra Nevada

- Concentrated low velocities in the lower crust
- ~3.3 km/s
- Highest topography
- Velocity reversal in the crust required to fit the data
- Compacted delamination

S wave and surface wave joint

- Starting model from surface wave inversion from 0-160 km
- 3D ray tracing using Fast Marching method

S body wave and surface wave

 Isabella Anomaly extends to ~270 km depth with a dipping angle of ~40°

Creeping section of San Andreas

Conclusions & Questions

- Surface wave tomography highlights E-dipping IA anomaly in upper mantle and high velocity materials in the mid/lower crust of the Great Valley
- Seismic scattered imaging delineate Edipping interface and prominent Wdipping interface
- Body wave and surface wave joint inversion images IA extend to ~270 km with an angle of 40°
- Suggest fossil slab origin for Isabella anomaly

Conclusions & Questions

Resolution test of seismic scattering & surface wave tomography in progress

Thank you for your attention! Questions?

Effects of prior constraints on

• Positive Vs gradient in the uppermost mantle layer

Input and Output Moho model

Full-waveform tomography in S.

CVM-S4.26 Vs @ 20 km

Isabella anomaly in 3D

3% and -3%

Teleseismic data

Bouguer gravity anomaly

Density vs. Mg#

Afonso et al., 2013

Model comparison

